Gibbs partitions: The convergent case

We study Gibbs partitions that typically form a unique giant component. The remainder is shown to converge in total variation toward a Boltzmann-distributed limit structure. We demon- strate how this setting encompasses arbitrary weighted assemblies of tree-like combinatorial structures. As an application, we establish smooth growth along lattices for small block-stable classes of graphs. Random graphs with n vertices from such classes are shown to form a giant connected component. The small fragments may converge toward different Poisson Boltzmann limit graphs, depending along which lattice we let n tend to infinity. Since proper addable minor-closed classes of graphs belong to the more general family of small block-stable classes, this recovers and generalizes results by McDiarmid (2009).

[1]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[2]  Svante Janson Random cutting and records in deterministic and random trees , 2006 .

[3]  Michael M. Erlihson,et al.  Limit shapes of Gibbs distributions on the set of integer partitions: The expansive case , 2008 .

[4]  Colin McDiarmid,et al.  Random Graphs from a Minor-Closed Class , 2009, Combinatorics, Probability and Computing.

[5]  S. Foss,et al.  An Introduction to Heavy-Tailed and Subexponential Distributions , 2011 .

[6]  D. Welsh,et al.  On the growth rate of minor-closed classes of graphs , 2007, 0710.2995.

[7]  Colin McDiarmid,et al.  Random planar graphs , 2005, J. Comb. Theory B.

[8]  Paul Wollan,et al.  Proper minor-closed families are small , 2006, J. Comb. Theory B.

[9]  Marc Noy,et al.  Random planar graphs and beyond , 2014 .

[10]  T. F. Móri On random trees , 2002 .

[11]  P. Ney,et al.  Functions of probability measures , 1973 .

[12]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[13]  Edward A. Bender,et al.  Coefficients of Functional Compositions Often Grow Smoothly , 2008, Electron. J. Comb..

[14]  Xavier Gourdon,et al.  Largest component in random combinatorial structures , 1998, Discret. Math..

[15]  Manuel Bodirsky,et al.  Boltzmann Samplers, Pólya Theory, and Cycle Pointing , 2010, SIAM J. Comput..

[16]  Robert W. Robinson,et al.  Enumeration of non-separable graphs* , 1970 .

[17]  J. Kemeny A probability limit theorem requiring no moments , 1959 .

[18]  P. Embrechts,et al.  FUNCTIONS OF POWER SERIES , 1984 .

[19]  Edward A. Bender,et al.  Asymptotics for the Probability of Connectedness and the Distribution of Number of Components , 2000, Electron. J. Comb..

[20]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[21]  Omer Giménez,et al.  Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.

[22]  Frank Harary,et al.  Graphical enumeration , 1973 .

[23]  R. Arratia,et al.  Logarithmic Combinatorial Structures: A Probabilistic Approach , 2003 .

[24]  Colin McDiarmid,et al.  Random graphs on surfaces , 2008, J. Comb. Theory, Ser. B.

[25]  Svante Janson,et al.  Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.

[26]  A.D.Barbour,et al.  Random Combinatorial structures:the convergent case , 2003, math/0305031.

[27]  Ljuben R. Mutafchiev,et al.  Local Limit Theorems for Sums of Power Series Distributed Random Variables and for the Number of Components in Labelled Relational Structures , 1992, Random Struct. Algorithms.