The numerical solution of nonlinear generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations via the meshless method of integrated radial basis functions

In this paper, a numerical technique is proposed for solving the nonlinear generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations. The used numerical method is based on the integrated radial basis functions (IRBFs). First, the time derivative has been approximated using a finite difference scheme. Then, the IRBF method is developed to approximate the spatial derivatives. The two-dimensional version of these equations is solved using the presented method on different computational geometries such as the rectangular, triangular, circular and butterfly domains and also other irregular regions. The aim of this paper is to show that the integrated radial basis function method is also suitable for solving nonlinear partial differential equations. Numerical examples confirm the efficiency of the proposed scheme.

[1]  K. Omrani,et al.  High-order conservative difference scheme for a model of nonlinear dispersive equations , 2018 .

[2]  K. R. Raslan,et al.  A computational method for the regularized long wave (RLW) equation , 2005, Appl. Math. Comput..

[3]  V. G. Makhankov,et al.  One more example of inelastic soliton interaction , 1976 .

[4]  S. Sarra,et al.  Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations , 2009 .

[5]  Nam Mai-Duy,et al.  Compact local integrated-RBF approximations for second-order elliptic differential problems , 2011, J. Comput. Phys..

[6]  Khaled Omrani,et al.  Finite difference discretization of the Benjamin‐Bona‐Mahony‐Burgers equation , 2008 .

[7]  Luming Zhang,et al.  Conservative schemes for the symmetric Regularized Long Wave equations , 2007, Appl. Math. Comput..

[8]  Muhammad Aslam Noor,et al.  Some new solitonary solutions of the modified Benjamin-Bona-Mahony equation , 2011, Comput. Math. Appl..

[9]  T. Tran-Cong,et al.  A compact 9 point stencil based on integrated RBFs for the convection–diffusion equation , 2014 .

[10]  Saeid Abbasbandy,et al.  The first integral method for modified Benjamin–Bona–Mahony equation , 2010 .

[11]  Thanh Tran-Cong,et al.  Limit state analysis of reinforced concrete slabs using an integrated radial basis function based mesh-free method , 2018 .

[12]  C. M. T. Tien,et al.  Compact approximation stencils based on integrated flat radial basis functions , 2017 .

[13]  M. Labidi,et al.  Numerical simulation of the modified regularized long wave equation by He's variational iteration method , 2011 .

[14]  S. A. Sarra,et al.  Integrated multiquadric radial basis function approximation methods , 2006, Comput. Math. Appl..

[15]  Mehdi Dehghan,et al.  The numerical solution of nonlinear high dimensional generalized Benjamin-Bona-Mahony-Burgers equation via the meshless method of radial basis functions , 2014, Comput. Math. Appl..

[16]  D. Peregrine Calculations of the development of an undular bore , 1966, Journal of Fluid Mechanics.

[17]  Scott A. Sarra,et al.  A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains , 2012, Appl. Math. Comput..

[18]  Mostafa Abbaszadeh,et al.  The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations , 2017, Alexandria Engineering Journal.

[19]  K. Omrani,et al.  Two conservative difference schemes for a model of nonlinear dispersive equations , 2017 .

[20]  Nam Mai-Duy,et al.  A collocation method based on one-dimensional RBF interpolation scheme for solving PDEs , 2007 .

[21]  Michael J. McCourt,et al.  Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..

[22]  K. Omrani,et al.  Methods for the numerical solution of the Benjamin‐Bona‐Mahony‐Burgers equation , 2008 .

[23]  Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design , 2016 .

[24]  Cesar Augusto Gómez Sierra,et al.  New periodic and soliton solutions for the Generalized BBM and Burgers-BBM equations , 2010, Appl. Math. Comput..

[25]  Khaled Omrani,et al.  The convergence of fully discrete Galerkin approximations for the Benjamin-Bona-Mahony (BBM) equation , 2006, Appl. Math. Comput..

[26]  K. Omrani,et al.  Application of the homotopy perturbation method to the modified regularized long‐wave equation , 2010 .

[27]  Scott A. Sarra,et al.  Adaptive radial basis function methods for time dependent partial differential equations , 2005 .

[28]  L. W. Zhang,et al.  Numerical analysis of generalized regularized long wave equation using the element-free kp-Ritz method , 2014, Appl. Math. Comput..

[29]  Mehdi Dehghan,et al.  The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations on non-rectangular domains with error estimate , 2015, J. Comput. Appl. Math..

[30]  Chang Shu,et al.  Integrated radial basis functions‐based differential quadrature method and its performance , 2007 .

[31]  Huijiang Zhao,et al.  Nonlinear stability of generalized Benjamin–Bona–Mahony–Burgers shock profiles in several dimensions , 2013 .

[32]  Amir Hosseini,et al.  Exact travelling solutions for Benjamin-Bona-Mahony-Burgers equations by (G'/G)-expansion method , 2010 .

[33]  I. Dag,et al.  Approximation of the RLW equation by the least square cubic B-spline finite element method , 2001 .

[34]  Jerry L. Bona,et al.  A mathematical model for long waves generated by wavemakers in non-linear dispersive systems , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  K. Omrani,et al.  New conservative difference schemes with fourth‐order accuracy for some model equation for nonlinear dispersive waves , 2018 .

[36]  Davood Domiri Ganji,et al.  Approximate general and explicit solutions of nonlinear BBMB equations by Exp-Function method , 2009 .

[37]  Idris Dag,et al.  Galerkin method for the numerical solution of the RLW equation using quadratic B-splines , 2004, Int. J. Comput. Math..

[38]  Selçuk Kutluay,et al.  Application of a lumped Galerkin method to the regularized long wave equation , 2006, Appl. Math. Comput..

[39]  Luming Zhang,et al.  A finite difference scheme for generalized regularized long-wave equation , 2005, Appl. Math. Comput..

[40]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[41]  Keisuke Araki,et al.  Interactions of two-dimensionally localized pulses of the regularized-long-wave equation , 1992 .

[42]  K. Omrani,et al.  A new conservative fourth‐order accurate difference scheme for solving a model of nonlinear dispersive equations , 2018 .

[43]  Shaomei Fang,et al.  Optimal decay rates of solutions for a multidimensional generalized Benjamin–Bona–Mahony equation , 2012 .

[44]  Mehdi Dehghan,et al.  A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions , 2007, Comput. Math. Appl..

[45]  Idris Dag,et al.  B-Spline Collocation Methods For Numerical Solutions Of The Rlw Equation , 2003, Int. J. Comput. Math..

[46]  Khaled Omrani,et al.  A fully Galerkin method for the damped generalized regularized long‐wave (DGRLW) equation , 2009 .

[47]  Chen Zhengzheng,et al.  DEGENERATE BOUNDARY LAYER SOLUTIONS TO THE GENERALIZED BENJAMIN-BONAMAHONY-BURGERS EQUATION , 2012 .

[48]  Huang Zheng-hong On cauchy problems for the RLW equation in two space dimensions , 2002 .

[49]  J. A. Tenreiro Machado,et al.  Discontinuity and complexity in nonlinear physical systems , 2014 .

[50]  S. Sarra,et al.  Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation , 2014 .

[51]  Scott A. Sarra,et al.  Radial basis function approximation methods with extended precision floating point arithmetic , 2011 .

[52]  Hui Yin,et al.  Exponential decay rate of solutions toward traveling waves for the Cauchy problem of generalized Benjamin–Bona–Mahony–Burgers equations , 2010 .

[53]  Asma Rouatbi,et al.  Numerical scheme for a model of shallow water waves in -dimensions , 2017, Comput. Math. Appl..

[54]  Thoudam Roshan,et al.  A Petrov-Galerkin method for solving the generalized regularized long wave (GRLW) equation , 2012, Comput. Math. Appl..

[55]  T. Achouri,et al.  On the convergence of difference schemes for the Benjamin-Bona-Mahony (BBM) equation , 2006, Appl. Math. Comput..

[56]  T. Tran-Cong,et al.  A multidomain integrated‐radial‐basis‐function collocation method for elliptic problems , 2008 .

[57]  Dheeraj Bhardwaj,et al.  A computational method for regularized long wave equation , 2000 .

[58]  Mehdi Dehghan,et al.  A meshless method using the radial basis functions for numerical solution of the regularized long wave equation , 2010 .

[59]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[60]  Mehdi Dehghan,et al.  The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas , 2011, Comput. Phys. Commun..