Evaluation of gravitational gradients generated by Earth's crustal structures

Spectral formulas for the evaluation of gravitational gradients generated by upper Earth's mass components are presented in the manuscript. The spectral approach allows for numerical evaluation of global gravitational gradient fields that can be used to constrain gravitational gradients either synthesised from global gravitational models or directly measured by the spaceborne gradiometer on board of the GOCE satellite mission. Gravitational gradients generated by static atmospheric, topographic and continental ice masses are evaluated numerically based on available global models of Earth's topography, bathymetry and continental ice sheets. CRUST2.0 data are then applied for the numerical evaluation of gravitational gradients generated by mass density contrasts within soft and hard sediments, upper, middle and lower crust layers. Combined gravitational gradients are compared to disturbing gravitational gradients derived from a global gravitational model and an idealised Earth's model represented by the geocentric homogeneous biaxial ellipsoid GRS80. The methodology could be used for improved modelling of the Earth's inner structure.

[1]  R. Tenzer,et al.  The Bathymetric Stripping Corrections to Gravity Field Quantities for a Depth-Dependent Model of Seawater Density , 2012 .

[2]  J. Hinojosa,et al.  The complete gravity gradient tensor derived from the vertical component of gravity: a Fourier transform technique. , 2001 .

[3]  Georges Balmino,et al.  Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies , 2012, Journal of Geodesy.

[4]  Mehdi Eshagh Non-singular expressions for the vector and the gradient tensor of gravitation in a geocentric spherical frame , 2008, Comput. Geosci..

[5]  G. Arfken Mathematical Methods for Physicists , 1967 .

[6]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[7]  Lars E. Sjöberg,et al.  Solving Vening Meinesz-Moritz inverse problem in isostasy , 2009 .

[8]  R. Rapp The Earth's Gravity Field to Degree and Order 180 Using Seasat Altimeter Data, Terrestrial Gravity Data and Other Data, , 1981 .

[9]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[10]  Lars E. Sjöberg,et al.  Atmospheric effects on satellite gravity gradiometry data , 2009 .

[11]  D. Sampietro GOCE EXPLOITATION FOR MOHO MODELING AND APPLICATIONS , 2011 .

[12]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[13]  Helmut Moritz,et al.  Geodetic Reference System 1980 , 1980 .

[14]  H. Sünkel Global topographic-isostatic models , 1986 .

[15]  Z. Martinec The Density Contrast At the Mohorovičic̀ Discontinuity , 1994 .

[16]  M. Eshagh The effect of lateral density variations of crustal and topographic masses on GOCE gradiometric data — A study in Iran and Fennoscandia , 2009 .

[17]  Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames , 2006 .

[18]  P. Novák High Resolution Constituents of the Earth’s Gravitational Field , 2009 .

[19]  M. Fuchs,et al.  GOCE gravity gradients versus global gravity field models , 2012 .

[20]  Peter Schwintzer,et al.  Density of the continental roots: compositional and thermal contributions , 2003 .

[21]  E. Grafarend,et al.  The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data , 2006 .

[22]  Hans Sünkel Mathematical and Numerical Techniques in Physical Geodesy , 1986 .

[23]  W. M. Kaula,et al.  A spherical harmonic analysis of the Earth's topography , 1967 .

[24]  Mehdi Eshagh,et al.  Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data , 2010, Earth Sci. Informatics.

[25]  Michal Sprlák,et al.  A graphical user interface application for evaluation of the gravitational tensor components generated by a level ellipsoid of revolution , 2012, Comput. Geosci..

[26]  Z. Martinec,et al.  Higher-degree reference field in the generalized Stokes-Helmert scheme for geoid computation , 1995 .

[27]  M. Eshagh Spherical Harmonics Expansion of the Atmospheric Gravitational Potential Based on Exponential and Power Models of Atmosphere , 2008 .

[28]  Bob Pawlowski,et al.  Gravity gradiometry in resource exploration , 1998 .

[29]  V. Chris Lakhan,et al.  GIS-Based Analysis and Modeling of Coastline Advance and Retreat Along the Coast of Guyana , 2012 .

[30]  Mehdi Eshagh,et al.  Alternative expressions for gravity gradients in local north-oriented frame and tensor spherical harmonics , 2010 .

[31]  F. Wild-Pfeiffer A comparison of different mass elements for use in gravity gradiometry , 2008 .

[32]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[33]  M. Eshagh Contribution of 1st -3rd Order Terms of a Binomial Expansion of Topographic Heights in Topographic and Atmospheric Effects on Satellite Gravity Gradiometric Data , 2009 .

[34]  On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution , 2011 .

[35]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[36]  Mehdi Eshagh,et al.  Smoothing impact of isostatic crustal thickness models on local integral inversion of satellite gravity gradiometry data , 2011 .

[37]  Topographic and atmospheric effects on goce gradiometric data in a local north-oriented frame: A case study in Fennoscandia and Iran , 2009 .

[38]  M. Eshagh Comparison of two approaches for considering laterally varying density in topographic effect on satellite gravity gradiometric data , 2010 .

[39]  Jean-Charles Marty,et al.  A new combined global gravity field model including GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse , 2010 .

[40]  R. Tenzer,et al.  Global maps of the CRUST 2.0 crustal components stripped gravity disturbances , 2009 .

[41]  W. Featherstone,et al.  Construction of a Synthetic Earth Gravity Model by Forward Gravity Modelling , 2005 .