Enhancement of thermoelectric properties of Ce0.9Fe3.75Ni0.25Sb12 p-type skutterudite by tellurium addition

Recently, research interests in p-type skutterudites are focused on multi-filling in the intrinsic void sites of Fe4−xMxSb12. The four-membered antimony rings, another important structural feature of p-type skutterudites, seem to be overlooked. In this study, Te has been employed to substitute Sb in single-filled p-type Ce0.9Fe3.75Ni0.25Sb12 skutterudite and a systematic investigation has been carried out into the doping effect of Te on the microstructure and thermoelectric properties of this material. With an increase of Te doping, the electrical resistivity decreases due to the increase of hole concentration and the gradual decrease of mobility; while the density of state effective mass increases rapidly with the increase of hole concentration due to the intrinsic multiple bands effects, thus the Seebeck coefficient increases slightly. In addition, Te doping on Sb sites changes the valance electron balance and results in the formation of microscale γ-Ce and nanoscale CeTe2 compound. These microscale and nanoscale precipitates work together with the atomic scale distortion of Sb4 rings by the substitution of Te for Sb, could scatter phonons with a wide range of frequency thus result in a significant reduction of the lattice thermal conductivity. Therefore the thermoelectric performance has been enhanced greatly, and a maximum ZT value of 1.0 at 773 K was obtained for the Ce0.9Fe3.75Ni0.25Sb11.9Te0.1 sample.

[1]  S. Suwas,et al.  Thermoelectric properties of Fe0.2Co3.8Sb12−xTex skutterudites , 2013 .

[2]  Zhiwei Zhou,et al.  Enhancement of thermoelectric properties of Yb-filled skutterudites by an Ni-Induced “core–shell” structure , 2015 .

[3]  J. Sakamoto,et al.  Thermoelectric properties of Sn substituted p-type Nd filled skutterudites , 2015 .

[4]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[5]  C. Uher,et al.  Low-temperature transport properties of the filled skutterudites CeFe 4-x Co x Sb 12 s , 1997 .

[6]  G. J. Snyder,et al.  High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb) , 2011 .

[7]  Qingjie Zhang,et al.  Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25–xTex (x = 0.125–0.20) with in Situ Nanostructure , 2011 .

[8]  Huaidong Jiang,et al.  Raman spectroscopy investigation of partially filled skutterudite , 2001 .

[9]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[10]  A. Grytsiv,et al.  Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1−xCox)4Sb12 and DDy(Fe1−xNix)4Sb12 , 2010 .

[11]  Marco Buongiorno Nardelli,et al.  Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. , 2015, Nature materials.

[12]  K. Yubuta,et al.  In-doped multifilled n-type skutterudites with ZT = 1.8 , 2015 .

[13]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[14]  Jihui Yang,et al.  Power factor enhancement in light valence band p-type skutterudites , 2012 .

[15]  Li-Min Wang,et al.  Intensive suppression of thermal conductivity in Nd0.6Fe2Co2Sb12-xGex through spontaneous precipitates , 2013 .

[16]  Beno Sternlicht,et al.  Waste energy recovery: An excellent investment opportunity , 1982 .

[17]  R. Waldo,et al.  Rare-earth free p-type filled skutterudites: Mechanisms for low thermal conductivity and effects of Fe/Co ratio on the band structure and charge transport , 2015 .

[18]  Junyou Yang,et al.  Effect of La filling on thermoelectric properties of LaxCo3.6Ni0.4Sb12-filled skutterudite prepared by MA–HP method , 2006 .

[19]  Y. Lan,et al.  Thermoelectric performance of Ni compensated cerium and neodymium double filled p-type skutterudites. , 2014, Physical chemistry chemical physics : PCCP.

[20]  Hsin Wang,et al.  Thermoelectric Properties of P-type Skutterudites YbxFe3.5Ni0.5Sb12 (0.8 x 1) , 2012 .

[21]  Xiangyang Huang,et al.  Composition optimization of p-type skutterudites Ce_yFe_xCo_4−xSb_12 and Yb_yFe_xCo_4−xSb_12 , 2011 .

[22]  M. Liu,et al.  Multiple heteroatom induced carrier engineering and hierarchical nanostructures for high thermoelectric performance of polycrystalline In4Se2.5 , 2015 .

[23]  David J. Singh,et al.  Trends in Electrical Transport of p-type Skutterudites RFe4Sb12 (R-Na,K,Ca,Sr,Ba,La,Ce,Pr,Yb) from First Principles Calculations and Boltzmann Transport Theory , 2011 .

[24]  Jiong Yang,et al.  Thermoelectric Transport Properties of RyFe3NiSb12 (R = Ba,Nd and Yb) , 2014 .

[25]  Junyou Yang,et al.  Preparation and thermoelectric properties of LaxFeCo3Sb12 skutterudites by mechanical alloying and hot pressing , 2006 .

[26]  David J. Singh,et al.  Properties of alkaline-earth-filled skutterudite antimonides: A(Fe,Ni)4Sb12 (A=Ca, Sr, and Ba) , 2010 .

[27]  T. Thompson,et al.  Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric performance , 2014 .

[28]  G. Nolas,et al.  Crystal structure and high temperature transport properties of Yb-filled p-type skutterudites YbxCo2.5Fe1.5Sb12 , 2014 .

[29]  G. Tan,et al.  Preparation and thermoelectric properties of p-type filled skutterudites CeyFe4−xNixSb12 , 2014 .

[30]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[31]  Z. Ye,et al.  Thermoelectric performance of p-type skutterudites YbxFe4−yPtySb12 (0.8 ≤ x ≤ 1, y = 1 and 0.5) , 2013 .

[32]  B. Liao,et al.  High thermoelectric performance by resonant dopant indium in nanostructured SnTe , 2013, Proceedings of the National Academy of Sciences.

[33]  X. Su,et al.  Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1−x via band structure modification and significant point defect scattering , 2013 .

[34]  Claudia Felser,et al.  A large family of filled skutterudites stabilized by electron count. , 2015, Nature communications.

[35]  David J. Singh,et al.  Thermoelectric properties of Ni-doped CeFe4Sb12 skutterudites , 2012 .

[36]  M. Kanatzidis,et al.  Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 , 2014, Nature Communications.

[37]  Weishu Liu,et al.  Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb , 2008 .

[38]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[39]  Gangjian Tan,et al.  High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures , 2013 .