Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf

The modern benthic fauna of the Antarctic continental shelf is characterized by the lack of active, skeleton-breaking (durophagous) predators such as crabs, lobsters and many fish, and the dominance in many areas of epifaunal suspension feeders. It has often been remarked that these ecological characteristics give the fauna a distinctly Palaeozoic feel, with the assumption that it may be an evolutionary relic. We now know that this is not so, and fossil evidence shows clearly that many of the taxa and life-styles that are absent now were previously present. The modern fauna has been shaped by a number of factors, important among which have been oceanographic changes and the onset of Cenozoic glaciation. Sea-water cooling, and periodic fragmentation of ranges and bathymetric shifts in distribution driven by variability in the size and extent of the continental ice cap on Milankovitch frequencies will all have caused both extinction and allopatric speciation. The modern glacial setting with relatively low terrestrial impact away from immediate coastal regions, and scouring by icebergs are the key factors influencing the ecology and population dynamics for the modern Antarctic benthos.

[1]  J. Parren Climate change from an Antarctic perspective , 1997 .

[2]  J. Gutt On the direct impact of ice on marine benthic communities, a review , 2001, Polar Biology.

[3]  K. Linse,et al.  Biogeography of Crustacea and Mollusca of the Subantarctic and Antarctic regions , 1999 .

[4]  R. Powell,et al.  Preliminary depositional environmental analysis of CRP-2/2A, Victoria Land Basin, Antarctica: palaeoglaciological and palaeoclimatic inferences , 2000 .

[5]  I. Johnston,et al.  Evolution and adaptive radiation of antarctic fishes. , 1996, Trends in ecology & evolution.

[6]  J. S. Gray,et al.  Antarctic marine benthic biodiversity in a world-wide latitudinal context , 2001, Polar Biology.

[7]  R. Aronson,et al.  Retrograde community structure in the late Eocene of Antarctica , 1997 .

[8]  G. Vermeij The Mesozoic marine revolution: evidence from snails, predators and grazers , 1977, Paleobiology.

[9]  A. Brandt Hypotheses on Southern Ocean peracarid evolution and radiation (Crustacea, Malacostraca) , 2000, Antarctic Science.

[10]  A. Clarke Evolution, adaptation and diversity: global ecology in an Antarctic context , 2003 .

[11]  J. Walsh On the Nature of Continental Shelves , 1988 .

[12]  Andreas Starmans,et al.  Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica) , 2001, Polar Biology.

[13]  David Pollard,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[14]  J. Crame,et al.  Taxonomic diversity gradients through geological time , 2001 .

[15]  L. Peck,et al.  Predatory behaviour and metabolic costs in the Antarctic muricid gastropod Trophon longstaffi , 2003, Polar Biology.

[16]  R. Feldmann,et al.  Cenozoic High Latitude Heterochroneity of Southern Hemisphere Marine Faunas , 1984, Science.

[17]  L. Gahagan,et al.  Evolution of Cenozoic seaways in the circum-Antarctic region , 2003 .

[18]  A. Clarke,et al.  The Southern Ocean Benthic Fauna and Climate Change: A Historical Perspective , 1992 .

[19]  J. Crame Origins and evolution of the Antarctic Biota , 1987 .

[20]  C. Held No evidence for slow-down of molecular substitution rates at subzero temperatures in Antarctic serolid isopods (Crustacea, Isopoda, Serolidae) , 2001, Polar Biology.

[21]  Gordon A. Robilliard,et al.  Biological Accommodation in the Benthic Community at McMurdo Sound, Antarctica , 1974 .

[22]  K. Baker,et al.  Primary productivity of the Palmer Long Term Ecological Research Area and the Southern Ocean , 1998 .

[23]  Liangbiao Chen,et al.  Evolution of an antifreeze glycoprotein , 1999, Nature.

[24]  J. McClintock Trophic biology of antarctic shallow-water echinoderms , 1994 .

[25]  D. P. Elston,et al.  Mid-Cenozoic record of glaciation and sea-level change on the margin of the Victoria Land basin, Antarctica , 1987 .

[26]  J. Zachos,et al.  Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary , 2001, Science.

[27]  Julian Gutt,et al.  Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs , 2003 .

[28]  M. Gorny On the biogeography and ecology of the Southern Ocean decapod fauna , 1999 .

[29]  B. Baker,et al.  A Review of the Chemical Ecology of Antarctic Marine Invertebrates , 1997 .

[30]  J. Eastman Antarctic Fish Biology: Evolution in a Unique Environment , 1993 .

[31]  T. Oji,et al.  Eocene crinoids from Seymour Island, Antarctic Peninsula: paleobiogeographic and paleoecologic implications , 1993, Journal of Paleontology.

[32]  R. Aronson,et al.  Eocene stelleroids (Echinodermata) at Seymour Island, Antarctic Peninsula , 1998, Journal of Paleontology.

[33]  J. Rozema,et al.  Antarctic biology in a global context , 2003 .

[34]  B. Picton,et al.  The species directory of the marine fauna and flora of the British Isles and surrounding seas , 1997 .

[35]  R. Feldmann,et al.  New Fossil Crabs (Decapoda: Brachyura) from the La Meseta Formation (Eocene) of Antarctica: Paleogeographic and Biogeographic Implications , 1984 .

[36]  G. Shi,et al.  Permian Gondwana-Boreal antitropicality with special reference to brachiopod faunas , 2000 .

[37]  A. Oleinik,et al.  Paleocene diversification of bucciniform gastropods on Seymour Island, Antarctica , 1996, Journal of Paleontology.

[38]  J. Eastman,et al.  Evolution of the Antarctic fish fauna with emphasis on the Recent notothenioids , 1989, Geological Society, London, Special Publications.

[39]  G. Chapelle,et al.  Diversity of epibenthic habitats of gammaridean amphipods in the eastern Weddell Sea , 2001, Polar Biology.

[40]  R. Feldmann,et al.  First Occurrence of Fossil Decapod Crustaceans (Callianassidae) from the McMurdo Sound Region, Antarctica , 1984 .

[41]  C. Held Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda) , 2003 .

[42]  K. Birkenmajer,et al.  RECYCLED CRETACEOUS BELEMNITES IN LOWER MIOCENE GLACIO-MARINE SEDIMENTS (CAPE MELVILLE FORMATION) OF KING GEORGE ISLAND, WEST ANTARCTICA , 1987 .

[43]  Julian Gutt,et al.  Some “driving forces” structuring communities of the sublittoral Antarctic macrobenthos , 2000, Antarctic Science.

[44]  J. Stilwell Patterns of biodiversity and faunal rebound following the K-T boundary extinction event in Austral Palaeocene molluscan faunas , 2003 .

[45]  A. Roberts,et al.  Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary , 2001, Nature.

[46]  G. Poore,et al.  The expeditions ANTARKTIS-XIX/3-4 of the research vessel POLARSTERN in 2002 : (ANDEEP I and II: Antarctic benthic deep-sea biodiversity - colonization history and recent community patterns) , 2003 .

[47]  T. Brey,et al.  Trophic flows in the benthic shelf community of the eastern Weddell Sea, Antarctica , 1997 .

[48]  M. Gambi,et al.  Spatial and Vertical Distribution of Benthic Littoral Communities in Terra Nova Bay , 2000 .

[49]  A. Brandt,et al.  Late Jurassic tethyan ancestry of Recent southern high‐latitude marine isopods (Crustacea, Malacostraca) , 1999 .

[50]  J. Gutt How many macrozoobenthic species might inhabit the Antarctic shelf? , 2004, Antarctic Science.

[51]  J. Priscu,et al.  Antarctic Communities: Species, Structure and Survival , 1998 .

[52]  A. Clarke,et al.  Antarctic marine benthic diversity , 2003 .

[53]  R. H. Thomas,et al.  A molecular phylogeny of the patellid limpets (Gastropoda: Patellidae) and its implications for the origins of their antitropical distribution. , 1999, Molecular phylogenetics and evolution.

[54]  P. Arnaud Contribution à la bionomie marine benthique des régions antarctiques et subantarctiques , 1974 .

[55]  Sven Thatje,et al.  Antarctic reptant decapods: more than a myth? , 2004, Polar Biology.

[56]  T. Brey,et al.  Do Antarctic benthic invertebrates show an extended level of eurybathy? , 1996, Antarctic Science.

[57]  R. Aronson,et al.  Global Climate Change and the Origin of Modern Benthic Communities in Antarctica , 2001 .

[58]  J. C. Briggs Marine centres of origin as evolutionary engines , 2003 .

[59]  A. Clarke,et al.  A comparison of adaptive radiations of Antarctic fish with those of nonAntarctic fish , 1998 .

[60]  A. Clarke,et al.  The seasonal cycle of phytoplankton, macronutrients, and the microbial community in a nearshore Antarctic marine ecosystem , 1996 .

[61]  G. Eagles Tectonic evolution of the Antarctic–Phoenix plate system since 15 Ma , 2004 .

[62]  M. Collins,et al.  Commensalism between a liparid fish (Careproctus sp.) and stone crabs (Lithodidae) photographed in situ using a baited camera , 2000, Journal of the Marine Biological Association of the United Kingdom.

[63]  J. Crame Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas , 2000, Paleobiology.

[64]  W. Zinsmeister,et al.  Molluscan Systematics and Biostratigraphy: Lower Tertiary La Meseta Formation, Seymour Island, Antartic Peninsula , 1992 .

[65]  W. Zinsmeister Late Eocene bivalves (Mollusca) from the La Meseta Formation, collected during the 1974-1975 joint Argentine-American expedition to Seymour Island, Antarctic Peninsula , 1984 .

[66]  J. Eastman,et al.  Biology and phenotypic plasticity of the Antarctic nototheniid fish Trematomus newnesi in McMurdo Sound , 1997, Antarctic Science.

[67]  K. Linse,et al.  SOMBASE – Southern Ocean Mollusc Database: A tool for biogeographic analysis in diversity and ecology , 2003 .

[68]  H. Elderfield,et al.  Cenozoic deep-Sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite , 2000, Science.

[69]  R. Feldmann,et al.  Evolutionary patterns in macrurous decapod crustaceans from Cretaceous to early Cenozoic rocks of the James Ross Island region, Antarctica , 1989, Geological Society, London, Special Publications.

[70]  A. Ianora,et al.  Ross Sea Ecology , 2000, Springer Berlin Heidelberg.

[71]  H. Pörtner,et al.  Distribution patterns of decapod crustaceans in polar areas: a result of magnesium regulation? , 2001, Polar Biology.

[72]  J. Gutt,et al.  Antarctic marine biodiversity an overview , 1997 .

[73]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[74]  David Jablonski,et al.  Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology , 2000, Paleobiology.

[75]  J. Crame Evolutionary history of the polar regions , 1992 .

[76]  A. Brandt Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca) = Colonization of the Antarctic shelf by the Isopoda (Crustacea, Malacostraca) , 1991 .

[77]  C. Held Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. , 2000, Molecular phylogenetics and evolution.

[78]  D. Fratt,et al.  Feeding biology of the Antarctic brittle star Ophionotus victoriae (Echinodermata: Ophiuroidea) , 1984, Polar Biology.

[79]  J. Crame,et al.  Significance of a new nephropid lobster from the Miocene of Antarctica , 1998 .

[80]  S. Miller,et al.  How many species are there in Hawaii , 1995 .

[81]  K. Linse,et al.  More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae) , 2002, Polar Biology.

[82]  B. Hilbig Deep-sea polychaetes in the Weddell Sea and Drake Passage: first quantitative results , 2001, Polar Biology.

[83]  P. Tyler Ecosystems of the deep oceans , 2003 .

[84]  A. Clarke,et al.  Seasonality of feeding and nutritional status during the austral winter in the Antarctic sea urchin Sterechinus neumayeri , 2001 .

[85]  A. Clarke,et al.  The origin of the Southern Ocean marine fauna , 1989, Geological Society, London, Special Publications.

[86]  M. Gambi,et al.  Spatio-Temporal Variability in the Structure of Benthic Populations in a Physically Controlled System off Terra Nova Bay: The Shallow Hard Bottoms , 2000 .

[87]  D. Littlewood,et al.  A molecular phylogeny of the Littorininae (Gastropoda: Littorinidae): unequal evolutionary rates, morphological parallelism, and biogeography of the Southern Ocean. , 2003, Molecular phylogenetics and evolution.

[88]  R. Feldmann,et al.  First Pliocene decapod crustacean (Malacostraca: Palinuridae) from the Antarctic , 1997, Antarctic Science.

[89]  L. Watling,et al.  Antarctica as an evolutionary incubator: evidence from the cladistic biogeography of the amphipod Family Iphimediidae , 1989, Geological Society, London, Special Publications.