Robust Hα control of single input-delay systems based on sequential sub-predictors

This study presents an approach to the H ∞ control of linear input-delay systems. First, an H ∞ state predictor is introduced for dead-time systems with disturbance input and measurable outputs. The author's proposed method focuses on optimisation of the disturbance propagation in sequential sub-predictors (SSP). Each of the predictors is employed to forecast the state for one portion of the delay. The H ∞ performance of the prediction error can be improved by increasing the number of predictors. Consequently, an H ∞ controller is designed for the standard H ∞ problem of dead-time systems using SSP. More importantly, the SSP method is extended to the robust H ∞ control in presence of uncertainties. Some examples are given to illustrate the effectiveness of proposed method.

[1]  Jie Sheng,et al.  Optimal consensus control of linear multi-agent systems with communication time delay , 2013 .

[2]  P. Khargonekar,et al.  On the weighted sensitivity minimization problem for delay systems , 1987 .

[3]  Miroslav R. Mataušek,et al.  Control of stable, integrating and unstable processes by the Modified Smith Predictor , 2012 .

[4]  Vicenç Puig,et al.  Gain-scheduled smith proportional-integral derivative controllers for linear parameter varying first-order plus time-varying delay systems , 2011 .

[5]  Miroslav Krstic,et al.  Robustness of nonlinear predictor feedback laws to time- and state-dependent delay perturbations , 2012, Autom..

[6]  Saeed Hosseinnia,et al.  Closed-loop control of dead time systems via sequential sub-predictors , 2013, Int. J. Control.

[7]  Shengyuan Xu,et al.  Improved delay-dependent stability criteria for time-delay systems , 2005, IEEE Transactions on Automatic Control.

[8]  J. E. Normey-Rico,et al.  Dead-time compensation of constrained linear systems with bounded disturbances: output feedback case , 2013 .

[9]  G. Tadmor H ∞ interpolation in systems with commensurate input lags , 1989 .

[10]  K. Nagpal,et al.  ${\cal H}_\infty$ Control and Estimation Problems with Delayed Measurements: State-Space Solutions , 1997 .

[11]  Allen Tannenbaum,et al.  Weighted sensitivity minimization for delay systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[12]  Fuwen Yang,et al.  Observer-based H ∞ control for discrete-time stochastic systems with quantisation and random communication delays , 2013 .

[13]  Qing-Chang Zhong,et al.  A unified Smith predictor based on the spectral decomposition of the plant , 2004 .

[14]  Masami Ito,et al.  A process-model control for linear systems with delay , 1981 .

[15]  Z. Artstein Linear systems with delayed controls: A reduction , 1982 .

[16]  Ming-Tzu Ho,et al.  Synthesis of H∞ PID controllers: A parametric approach , 2003, Autom..

[17]  I. Petersen A stabilization algorithm for a class of uncertain linear systems , 1987 .

[18]  James Lam,et al.  Strong stabilisation by output feedback controller for linear systems with delayed input , 2012 .

[19]  Pedro Albertos,et al.  Robust control design for long time-delay systems , 2009 .

[20]  Xiaojun Qian Differential Games with Information Lags , 1994 .

[21]  Qing-Chang Zhong,et al.  Frequency domain solution to delay-type Nehari problem , 2003, Autom..

[22]  Qing-Guo Wang,et al.  Stabilizing control for a class of delay unstable processes. , 2010, ISA transactions.

[23]  Wei Chen,et al.  Linear matrix inequality-based repetitive controller design for linear systems with time-varying input delay , 2010 .

[24]  Y. Jia,et al.  Delay-dependent robust H ∞ control of time-delay systems , 2010 .

[25]  Iasson Karafyllis,et al.  Delay-robustness of linear predictor feedback without restriction on delay rate , 2013, Autom..

[26]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[27]  I-Lung Chien,et al.  Simple control method for integrating processes with long deadtime , 2002 .

[28]  Eduardo F. Camacho,et al.  Unified approach for robust dead-time compensator design , 2009 .

[29]  Pedro Albertos,et al.  Dead-time-compensator for unstable MIMO systems with multiple time delays☆☆☆ , 2010 .

[30]  O Smith,et al.  CLOSER CONTROL OF LOOPS WITH DEAD TIME , 1957 .

[31]  M.A.A. Shoukat Choudhury,et al.  A novel dead time compensator for stable processes with long dead times , 2012 .

[32]  Gilead Tadmor,et al.  The standard H∞ problem in systems with a single input delay , 2000, IEEE Trans. Autom. Control..

[33]  Leonid Mirkin,et al.  Every stabilizing dead-time controller has an observer-predictor-based structure , 2003, Autom..

[34]  D. Wang,et al.  A strong tracking predictor for nonlinear processes with input time delay , 2004, Comput. Chem. Eng..

[35]  S. Mitter,et al.  H ∞ 0E Sensitivity Minimization for Delay Systems , 1987 .

[36]  Sanjoy K. Mitter,et al.  A note on essential spectra and norms of mixed Hankel-Toeplitz operators , 1988 .

[37]  Julio E. Normey-Rico,et al.  Unified approach for minimal output dead time compensation in MIMO processes , 2011 .

[38]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[39]  Wook Hyun Kwon,et al.  Feedback stabilization of linear systems with delayed control , 1980 .

[40]  Qing-Chang Zhong,et al.  On standard H∞ control of processes with a single delay , 2003, IEEE Trans. Autom. Control..

[41]  Qing-Chang Zhong H∞ control of dead-time systems based on a transformation , 2003, Autom..