Model selection in binary and tobit quantile regression using the Gibbs sampler

A stochastic search variable selection approach is proposed for Bayesian model selection in binary and tobit quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a location-scale mixture representation of the asymmetric Laplace distribution. The proposed approach is then illustrated via five simulated examples and two real data sets. Results show that the proposed method performs very well under a variety of scenarios, such as the presence of a moderately large number of covariates, collinearity and heterogeneity.

[1]  J. Horowitz SEMIPARAMETRIC ESTIMATION OF A WORK-TRIP MODE-CHOICE MODEL / , 1993 .

[2]  Edward I. George,et al.  ADAPTIVE BAYESIAN CRITERIA IN VARIABLE SELECTION FOR GENERALIZED LINEAR MODELS , 2007 .

[3]  Dirk Van den Poel,et al.  Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution , 2012 .

[4]  Keming Yu,et al.  Bayesian quantile regression , 2001 .

[5]  V. Chernozhukov,et al.  An MCMC approach to classical estimation , 2003 .

[6]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[7]  Anestis Antoniadis,et al.  BAYESIAN ESTIMATION IN SINGLE-INDEX MODELS , 2004 .

[8]  Yufeng Liu,et al.  VARIABLE SELECTION IN QUANTILE REGRESSION , 2009 .

[9]  A. Kottas,et al.  A Bayesian Nonparametric Approach to Inference for Quantile Regression , 2010 .

[10]  Han Hong,et al.  Three-Step Censored Quantile Regression and Extramarital Affairs , 2002 .

[11]  Zhiliang Ying,et al.  Simple resampling methods for censored regression quantiles , 2000 .

[12]  Brian J. Smith,et al.  boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference , 2007 .

[13]  W. Johnson,et al.  Modeling Regression Error With a Mixture of Polya Trees , 2002 .

[14]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[15]  Ji Zhu,et al.  L1-Norm Quantile Regression , 2008 .

[16]  Sanghamitra Das A semiparametric structural analysis of the idling of cement kilns , 1991 .

[17]  A. Kottas,et al.  Bayesian Semiparametric Modelling in Quantile Regression , 2009 .

[18]  J. Horowitz A Smoothed Maximum Score Estimator for the Binary Response Model , 1992 .

[19]  Ivana Komunjer,et al.  Quasi-maximum likelihood estimation for conditional quantiles , 2005 .

[20]  Ruibin Xi,et al.  Bayesian regularized quantile regression , 2010 .

[21]  R. Koenker,et al.  Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .

[22]  Sungwan Bang,et al.  Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization , 2012, Comput. Stat. Data Anal..

[23]  Chris Hans Bayesian lasso regression , 2009 .

[24]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[25]  Vincent Calcagno,et al.  glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models , 2010 .

[26]  Gregory Kordas Smoothed binary regression quantiles , 2006 .

[27]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[28]  Stephen G. Walker,et al.  Quantile pyramids for Bayesian nonparametrics , 2009, 0902.4410.

[29]  Julian Stander,et al.  Bayesian analysis of a Tobit quantile regression model , 2007 .

[30]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[31]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[32]  H. Bondell,et al.  Flexible Bayesian quantile regression for independent and clustered data. , 2010, Biostatistics.

[33]  Hui Zou,et al.  Computational Statistics and Data Analysis Regularized Simultaneous Model Selection in Multiple Quantiles Regression , 2022 .

[34]  S. Chib Bayes inference in the Tobit censored regression model , 1992 .

[35]  C. Manski MAXIMUM SCORE ESTIMATION OF THE STOCHASTIC UTILITY MODEL OF CHOICE , 1975 .

[36]  J. Powell,et al.  Censored regression quantiles , 1986 .

[37]  A. Belloni,et al.  L1-Penalized Quantile Regression in High Dimensional Sparse Models , 2009, 0904.2931.

[38]  E. Tsionas Bayesian quantile inference , 2003 .

[39]  J. Hahn Bootstrapping Quantile Regression Estimators , 1995, Econometric Theory.

[40]  B. Mallick,et al.  A Bayesian Semiparametric Accelerated Failure Time Model , 1999, Biometrics.

[41]  A. Gelfand,et al.  Bayesian Semiparametric Median Regression Modeling , 2001 .

[42]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[43]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[44]  H. Kozumi,et al.  Gibbs sampling methods for Bayesian quantile regression , 2011 .

[45]  Jinyong Hahn,et al.  An Alternative Estimator for the Censored Quantile Regression Model , 1998 .

[46]  Ray C. Fair,et al.  A Theory of Extramarital Affairs , 1978, Journal of Political Economy.

[47]  C. Manski Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator , 1985 .

[48]  Xuming He,et al.  Quantile regression with doubly censored data , 2012, Comput. Stat. Data Anal..

[49]  Anthony N. Pettitt,et al.  Likelihood-free Bayesian estimation of multivariate quantile distributions , 2011, Comput. Stat. Data Anal..

[50]  Alessio Farcomeni,et al.  Bayesian constrained variable selection , 2007 .

[51]  Peter Winker,et al.  Improving the computation of censored quantile regressions , 2007, Comput. Stat. Data Anal..

[52]  Nengjun Yi,et al.  Stochastic search variable selection for identifying multiple quantitative trait loci. , 2003, Genetics.

[53]  B. Goodwin Semiparametric (Distribution-Free) Testing of the Expectations Hypothesis in a Parimutuel Gambling Market , 1996 .

[54]  Hansheng Wang,et al.  Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .

[55]  Moshe Buchinsky Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study , 1995 .

[56]  A. I. Fernández,et al.  Estimation and specification testing in female labor participation models: parametric and semiparametric methods , 1997 .