Predictive fMRI analysis for multiple subjects and multiple studies

The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

[1]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[2]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[3]  M. Saunders,et al.  Towards a Generalized Singular Value Decomposition , 1981 .

[4]  Tom Michael Mitchell,et al.  Predicting Human Brain Activity Associated with the Meanings of Nouns , 2008, Science.

[5]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[6]  C. Morris Parametric Empirical Bayes Inference: Theory and Applications , 1983 .

[7]  Geoffrey E. Hinton,et al.  The EM algorithm for mixtures of factor analyzers , 1996 .

[8]  Tom Heskes,et al.  Task Clustering and Gating for Bayesian Multitask Learning , 2003, J. Mach. Learn. Res..

[9]  D. Botstein,et al.  Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Thomas G. Dietterich,et al.  To transfer or not to transfer , 2005, NIPS 2005.

[11]  Janaina Mourão Miranda,et al.  The impact of temporal compression and space selection on SVM analysis of single-subject and multi-subject fMRI data , 2006, NeuroImage.

[12]  Dinggang Shen,et al.  Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection , 2005, NeuroImage.

[13]  John Shawe-Taylor,et al.  Canonical Correlation Analysis: An Overview with Application to Learning Methods , 2004, Neural Computation.

[14]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[15]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[16]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[17]  Tom Michael Mitchell,et al.  From the SelectedWorks of Marcel Adam Just 2008 Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings , 2016 .

[18]  C. F. Beckmann,et al.  Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.

[19]  Erik D. Reichle,et al.  The Neural Bases of Strategy and Skill in Sentence–Picture Verification , 2000, Cognitive Psychology.

[20]  Daniel Marcu,et al.  Domain Adaptation for Statistical Classifiers , 2006, J. Artif. Intell. Res..

[21]  Geoffrey E. Hinton,et al.  Zero-shot Learning with Semantic Output Codes , 2009, NIPS.

[22]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[23]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[24]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[25]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[26]  Michael I. Jordan,et al.  A Probabilistic Interpretation of Canonical Correlation Analysis , 2005 .

[27]  H. Abdi The General Linear Model , 2009 .

[28]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[29]  Xiangrong Yin,et al.  Canonical correlation analysis based on information theory , 2004 .

[30]  H. Vinod Canonical ridge and econometrics of joint production , 1976 .

[31]  W. Penny,et al.  Random-Effects Analysis , 2002 .

[32]  R. Woods Modeling for Intergroup Comparisons of Imaging Data , 1996, NeuroImage.

[33]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[34]  Chong-sun Kim Canonical Analysis of Several Sets of Variables , 1973 .

[35]  Thomas G. Dietterich,et al.  Transfer Learning with an Ensemble of Background Tasks , 2005, NIPS 2005.

[36]  Ronald R. Coifman,et al.  Local discriminant bases and their applications , 1995, Journal of Mathematical Imaging and Vision.

[37]  Beatriz Luna,et al.  Combining Brains: A Survey of Methods for Statistical Pooling of Information , 2002, NeuroImage.

[38]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[39]  C. Genovese,et al.  Functional Imaging Analysis Software — Computational Olio , 1996 .

[40]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[41]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[42]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Applications , 2002, NeuroImage.

[43]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[44]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[45]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[46]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[47]  Lawrence Carin,et al.  Multi-Task Learning for Classification with Dirichlet Process Priors , 2007, J. Mach. Learn. Res..

[48]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[49]  Jonathan D. Cohen,et al.  Reproducibility of fMRI Results across Four Institutions Using a Spatial Working Memory Task , 1998, NeuroImage.

[50]  E. Demidenko,et al.  Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .

[51]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[52]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[53]  Tom M. Mitchell,et al.  Training fMRI Classifiers to Discriminate Cognitive States across Multiple Subjects , 2003, NIPS.

[54]  Rich Caruana,et al.  Multitask Learning , 1997, Machine-mediated learning.

[55]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[56]  Yiming Yang,et al.  Learning Multiple Related Tasks using Latent Independent Component Analysis , 2005, NIPS.

[57]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[58]  Matthew West,et al.  Bayesian factor regression models in the''large p , 2003 .

[59]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[60]  Anton Schwaighofer,et al.  Learning Gaussian processes from multiple tasks , 2005, ICML.

[61]  Leslie Pack Kaelbling,et al.  Efficient Bayesian Task-Level Transfer Learning , 2007, IJCAI.

[62]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[63]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[64]  Charles R. G. Guttmann,et al.  Functional MRI of auditory verbal working memory: long-term reproducibility analysis , 2004, NeuroImage.

[65]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[66]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[67]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[68]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[69]  Tom Michael Mitchell,et al.  A Neurosemantic Theory of Concrete Noun Representation Based on the Underlying Brain Codes , 2010, PloS one.