The design of mapping populations: Impacts of geographic scale on genetic architecture and mapping efficacy for defense and immunity

[1]  O. Loudet,et al.  Genomic Basis of Adaptation to a Novel Precipitation Regime , 2023, Molecular biology and evolution.

[2]  J. Pritchard,et al.  Simple scaling laws control the genetic architectures of human complex traits , 2022, bioRxiv.

[3]  F. Roux,et al.  A Genome-Wide Association study in Arabidopsis thaliana to decipher the adaptive genetics of quantitative disease resistance in a native heterogeneous environment , 2022, PloS one.

[4]  Klaudia Walter,et al.  GWAS of genetic factors affecting white blood cell morphological parameters in Sardinians uncovers influence of chromosome 11 innate immunity gene cluster on eosinophil morphology. , 2022, Human molecular genetics.

[5]  A. Naj,et al.  Genetic heterogeneity: Challenges, impacts, and methods through an associative lens , 2022, Genetic epidemiology.

[6]  Shizhong Xu,et al.  Graph pangenome captures missing heritability and empowers tomato breeding , 2022, Nature.

[7]  J. Bergelson,et al.  Genome-wide association mapping within a local Arabidopsis thaliana population more fully reveals the genetic architecture for defensive metabolite diversity , 2022, Philosophical Transactions of the Royal Society B.

[8]  Joseph J. Hale,et al.  The interplay of additivity, dominance, and epistasis on fitness in a diploid yeast cross , 2022, Nature Communications.

[9]  S. Genin,et al.  Study of natural diversity in response to a key pathogenicity regulator of Ralstonia solanacearum reveals new susceptibility genes in Arabidopsis thaliana , 2021, Molecular plant pathology.

[10]  M. Sohail,et al.  Populations, Traits, and Their Spatial Structure in Humans , 2021, Genome biology and evolution.

[11]  E. Ward,et al.  The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics , 2021, Nature Communications.

[12]  Michael M. Desai,et al.  Barcoded bulk QTL mapping reveals highly polygenic and epistatic architecture of complex traits in yeast , 2021, bioRxiv.

[13]  Alicia R. Martin,et al.  Genome-wide association studies , 2021, Nature Reviews Methods Primers.

[14]  R. Varshney,et al.  Designing Future Crops: Genomics-Assisted Breeding Comes of Age. , 2021, Trends in plant science.

[15]  M. Nordborg,et al.  Global Genetic Heterogeneity in Adaptive Traits , 2021, bioRxiv.

[16]  Jianming Yu,et al.  Status and prospects of genome‐wide association studies in plants , 2021, The plant genome.

[17]  J. Novembre,et al.  A variant-centric perspective on geographic patterns of human allele frequency variation , 2020, eLife.

[18]  D. Kliebenstein,et al.  Genetic variation, environment and demography intersect to shape Arabidopsis defense metabolite variation across Europe , 2020, bioRxiv.

[19]  M. Bonhomme,et al.  A complex network of additive and epistatic quantitative trait loci underlies natural variation of Arabidopsis thaliana quantitative disease resistance to Ralstonia solanacearum under heat stress , 2020, Molecular plant pathology.

[20]  S. Kryazhimskiy Emergence and propagation of epistasis in metabolic networks , 2020, bioRxiv.

[21]  Peter L. Ralph,et al.  Space is the Place: Effects of Continuous Spatial Structure on Analysis of Population Genetic Data , 2020, Genetics.

[22]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[23]  Stephanie A. Bien,et al.  Genetic analyses of diverse populations improves discovery for complex traits , 2019, Nature.

[24]  Y. Bossé,et al.  Benefits and limitations of genome-wide association studies , 2019, Nature Reviews Genetics.

[25]  Scott M. Williams,et al.  The Missing Diversity in Human Genetic Studies , 2019, Cell.

[26]  Robert M. Maier,et al.  Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies , 2019, eLife.

[27]  Lana S. Martin,et al.  Population structure in genetic studies: Confounding factors and mixed models , 2018, PLoS genetics.

[28]  J. Willis,et al.  Selective trade-offs maintain alleles underpinning complex trait variation in plants , 2018, Science.

[29]  G. Coop,et al.  Reduced signal for polygenic adaptation of height in UK Biobank , 2018, bioRxiv.

[30]  M. Navascués,et al.  Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time , 2017, Nature Ecology & Evolution.

[31]  Joseph H. Marcus,et al.  Overexpression of the Cytokine BAFF and Autoimmunity Risk , 2017, The New England journal of medicine.

[32]  Eleazar Eskin,et al.  Widespread allelic heterogeneity in complex traits , 2016, bioRxiv.

[33]  S. Fullerton,et al.  Genomics is failing on diversity , 2016, Nature.

[34]  D. Weeks,et al.  A thrifty variant in CREBRF strongly influences body mass index in Samoans , 2016, Nature Genetics.

[35]  Zhiwu Zhang,et al.  Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies , 2016, PLoS genetics.

[36]  J. Hirschhorn,et al.  Small island, big genetic discoveries , 2015, Nature Genetics.

[37]  M. P. Concas,et al.  Height-reducing variants and selection for short stature in Sardinia , 2015, Nature Genetics.

[38]  Alan M. Kwong,et al.  Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers , 2015, Nature Genetics.

[39]  T. Spector,et al.  GENOME-WIDE ASSOCIATION ANALYSES BASED ON WHOLE-GENOME SEQUENCING IN SARDINIA PROVIDE INSIGHTS INTO REGULATION OF HEMOGLOBIN LEVELS , 2015, Nature Genetics.

[40]  Alexander Platt,et al.  Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana , 2015, Proceedings of the National Academy of Sciences.

[41]  A. Long,et al.  Dissecting complex traits using the Drosophila Synthetic Population Resource. , 2014, Trends in genetics : TIG.

[42]  Liping Gao,et al.  The long-term maintenance of a resistance polymorphism through diffuse interactions , 2014, Nature.

[43]  M. Alda,et al.  The Impact of Phenotypic and Genetic Heterogeneity on Results of Genome Wide Association Studies of Complex Diseases , 2013, PloS one.

[44]  A. Korte,et al.  The advantages and limitations of trait analysis with GWAS: a review , 2013, Plant Methods.

[45]  Bjarni J. Vilhjálmsson,et al.  The nature of confounding in genome-wide association studies , 2012, Nature Reviews Genetics.

[46]  M. Lascoux,et al.  Impact of Sampling Schemes on Demographic Inference: An Empirical Study in Two Species with Different Mating Systems and Demographic Histories , 2012, G3: Genes | Genomes | Genetics.

[47]  G. McVean,et al.  Differential confounding of rare and common variants in spatially structured populations , 2011, Nature Genetics.

[48]  Gabor T. Marth,et al.  Demographic history and rare allele sharing among human populations , 2011, Proceedings of the National Academy of Sciences.

[49]  M. Nordborg,et al.  Conditions Under Which Genome-Wide Association Studies Will be Positively Misleading , 2010, Genetics.

[50]  Muhammad Ali Amer,et al.  Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines , 2010, Nature.

[51]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[52]  W. Stephan,et al.  The Impact of Sampling Schemes on the Site Frequency Spectrum in Nonequilibrium Subdivided Populations , 2009, Genetics.

[53]  Bjarne Gram Hansen,et al.  Biochemical Networks and Epistasis Shape the Arabidopsis thaliana Metabolome[W] , 2008, The Plant Cell Online.

[54]  D. Heckerman,et al.  Efficient Control of Population Structure in Model Organism Association Mapping , 2008, Genetics.

[55]  R. Durrett,et al.  Stepping-Stone Spatial Structure Causes Slow Decay of Linkage Disequilibrium and Shifts the Site Frequency Spectrum , 2007, Genetics.

[56]  Molly Przeworski,et al.  Evidence for population growth in humans is confounded by fine-scale population structure. , 2002, Trends in genetics : TIG.

[57]  Kenneth Lange,et al.  Use of population isolates for mapping complex traits , 2000, Nature Reviews Genetics.

[58]  Eric S. Lander,et al.  Genetic dissection of complex traits. , 1994, Science.

[59]  L. Eaves Effect of genetic architecture on the power of human linkage studies to resolve the contribution of quantitative trait loci , 1994, Heredity.

[60]  M. Todesco,et al.  Novel allelic variants in ACD6 cause hybrid necrosis in local collection of Arabidopsis thaliana. , 2017, The New phytologist.

[61]  J. Bertranpetit,et al.  Can a place of origin of the main cystic fibrosis mutations be identified? , 2002, American journal of human genetics.