A branch-and-bound approach for maximum quasi-cliques

Detecting quasi-cliques in graphs is a useful tool for detecting dense clusters in graph-based data mining. Particularly in large-scale data sets that are error-prone, cliques are overly restrictive and impractical. Quasi-clique detection has been accomplished using heuristic approaches in various applications of graph-based data mining in protein interaction networks, gene co-expression networks, and telecommunication networks. Quasi-cliques are not hereditary, in the sense that every subset of a quasi-clique need not be a quasi-clique. This lack of heredity introduces interesting challenges in the development of exact algorithms to detect maximum cardinality quasi-cliques. The only exact approaches for this problem are limited to two mixed integer programming formulations that were recently proposed in the literature. The main contribution of this article is a new combinatorial branch-and-bound algorithm for the maximum quasi-clique problem.

[1]  Sergiy Butenko,et al.  Clique Relaxations in Social Network Analysis: The Maximum k-Plex Problem , 2011, Oper. Res..

[2]  R. J. Mokken,et al.  Cliques, clubs and clans , 1979 .

[3]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[4]  P. Pardalos,et al.  An exact algorithm for the maximum clique problem , 1990 .

[5]  Takashi Washio,et al.  State of the art of graph-based data mining , 2003, SKDD.

[6]  Sergiy Butenko,et al.  On the maximum quasi-clique problem , 2013, Discret. Appl. Math..

[7]  D. Bu,et al.  the protein–protein interaction network , 2004 .

[8]  Lada A. Adamic,et al.  Power-Law Distribution of the World Wide Web , 2000, Science.

[9]  Donald L. Kreher,et al.  Combinatorial algorithms: generation, enumeration, and search , 1998, SIGA.

[10]  Mauro Brunato,et al.  On Effectively Finding Maximal Quasi-cliques in Graphs , 2008, LION.

[11]  Jianyong Wang,et al.  Out-of-core coherent closed quasi-clique mining from large dense graph databases , 2007, TODS.

[12]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[13]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[14]  F. Chung,et al.  Complex Graphs and Networks , 2006 .

[15]  Michael A. Langston,et al.  Detecting Network Motifs in Gene Co-expression Networks Through Integration of Protein Domain Information , 2004 .

[16]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Julien Gagneur,et al.  Modular decomposition of protein-protein interaction networks , 2004, Genome Biology.

[18]  Jian Pei,et al.  Mining cross-graph quasi-cliques in gene expression and protein interaction data , 2005, 21st International Conference on Data Engineering (ICDE'05).

[19]  Panos M. Pardalos,et al.  On maximum clique problems in very large graphs , 1999, External Memory Algorithms.

[20]  kc claffy,et al.  Internet topology: connectivity of IP graphs , 2001, SPIE ITCom.

[21]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[22]  Jure Leskovec,et al.  Planetary-scale views on a large instant-messaging network , 2008, WWW.

[23]  Yehoshua Perl,et al.  Clustering and domination in perfect graphs , 1984, Discret. Appl. Math..

[24]  Kihong Park,et al.  Scalability and traffic control in IP networks , 2001, Computer Communications.

[25]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[26]  D. Bu,et al.  Topological structure analysis of the protein-protein interaction network in budding yeast. , 2003, Nucleic acids research.

[27]  Guy Kortsarz,et al.  On choosing a dense subgraph , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[28]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Barabasi,et al.  Power Laws in Biological Networks , 2004, q-bio/0401010.

[30]  Uriel Feige,et al.  The Dense k -Subgraph Problem , 2001, Algorithmica.

[31]  R. Luce,et al.  Connectivity and generalized cliques in sociometric group structure , 1950, Psychometrika.

[32]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[33]  Sandra Sudarsky,et al.  Massive Quasi-Clique Detection , 2002, LATIN.

[34]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  George Varghese,et al.  Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications , 2001, SIGCOMM 2001.

[36]  Steven R. Corman,et al.  Studying Complex Discursive Systems: Centering Resonance Analysis of Communication. , 2002 .

[37]  Panos M. Pardalos,et al.  Mining market data: A network approach , 2006, Comput. Oper. Res..

[38]  Jian Pei,et al.  On mining cross-graph quasi-cliques , 2005, KDD '05.

[39]  D. West Introduction to Graph Theory , 1995 .

[40]  Eugene V. Koonin,et al.  Power Laws, Scale-Free Networks and Genome Biology , 2006 .

[41]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[42]  Jianyong Wang,et al.  Coherent closed quasi-clique discovery from large dense graph databases , 2006, KDD '06.

[43]  Sergiy Butenko,et al.  Novel Approaches for Analyzing Biological Networks , 2005, J. Comb. Optim..

[44]  Lawrence B. Holder,et al.  Graph-Based Data Mining , 2000, IEEE Intell. Syst..

[45]  J M Carlson,et al.  Highly optimized tolerance: a mechanism for power laws in designed systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  Jian Pei,et al.  Mining frequent cross-graph quasi-cliques , 2009, TKDD.

[47]  Simon Lin,et al.  Methods of microarray data analysis III , 2002 .

[48]  R. Alba A graph‐theoretic definition of a sociometric clique† , 1973 .