Fragile Complexity of Adaptive Algorithms

The fragile complexity of a comparison-based algorithm is f(n) if each input element participates in O(f(n)) comparisons. In this paper, we explore the fragile complexity of algorithms adaptive to various restrictions on the input, i.e., algorithms with a fragile complexity parameterized by a quantity other than the input size n. We show that searching for the predecessor in a sorted array has fragile complexity Θ(log k), where k is the rank of the query element, both in a randomized and a deterministic setting. For predecessor searches, we also show how to optimally reduce the amortized fragile complexity of the elements in the array. We also prove the following results: Selecting the kth smallest element has expected fragile complexity O(log log k) for the element selected. Deterministically finding the minimum element has fragile complexity Θ(log(Inv)) and Θ(log(Runs)), where Inv is the number of inversions in a sequence and Runs is the number of increasing runs in a sequence. Deterministically finding the median has fragile complexity O(log(Runs) + log log n) and Θ(log(Inv)). Deterministic sorting has fragile complexity Θ(log(Inv)) but it has fragile complexity Θ(log n) regardless of the number of runs.

[1]  Ian Parberry,et al.  Constructing Sorting Networks from k-Sorters , 1989, Inf. Process. Lett..

[2]  Leonidas J. Guibas,et al.  A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[3]  Ulrich Meyer,et al.  Fragile Complexity of Comparison-Based Algorithms , 2019, ESA.

[4]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[5]  Andrew Chi-Chih Yao,et al.  Lower Bounds on Merging Networks , 1976, JACM.

[6]  Dan E. Willard,et al.  Good worst-case algorithms for inserting and deleting records in dense sequential files , 1986, SIGMOD '86.

[7]  V. E. Alekseev Sorting algorithms with minimum memory , 1969 .

[8]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[9]  S. JIMBO,et al.  A Method of Constructing Selection Networks with O(log n) Depth , 1996, SIAM J. Comput..

[10]  Michael E. Saks,et al.  Tight lower bounds for the online labeling problem , 2012, STOC '12.

[11]  Alon Itai,et al.  A Sparse Table Implementation of Priority Queues , 1981, ICALP.

[12]  Vaughan R. Pratt Shellsort and Sorting Networks , 1972, Outstanding Dissertations in the Computer Sciences.

[13]  Maria Cristina Pinotti,et al.  Comparator networks for binary heap construction , 1998, Theor. Comput. Sci..

[14]  Joel I. Seiferas,et al.  Sorting Networks of Logarithmic Depth, Further Simplified , 2009, Algorithmica.

[15]  Michael T. Goodrich,et al.  Zig-zag sort: a simple deterministic data-oblivious sorting algorithm running in O(n log n) time , 2014, STOC.

[16]  Michael L. Fredman,et al.  Two applications of a probabilistic search technique: Sorting X+Y and building balanced search trees , 1975, STOC.

[17]  Nicholas Pippenger,et al.  Selection Networks , 1990, SIAM J. Comput..

[18]  Ivan Edward Sutherland,et al.  Sketchpad: A man-machine graphical communication system (Outstanding dissertations in the computer sciences) , 1980 .

[19]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[20]  Vašek Chvátal Lecture Notes on the New AKS Sorting Network , 1992 .

[21]  Derick Wood,et al.  A survey of adaptive sorting algorithms , 1992, CSUR.

[22]  Nicholas Pippenger,et al.  Selection Networks , 1990, SIAM J. Comput..

[23]  Salil P. Vadhan,et al.  Pseudorandomness , 2012, Found. Trends Theor. Comput. Sci..

[24]  Michael E. Saks,et al.  The periodic balanced sorting network , 1989, JACM.

[25]  Dan E. Willard,et al.  A Density Control Algorithm for Doing Insertions and Deletions in a Sequentially Ordered File in Good Worst-Case Time , 1992, Inf. Comput..

[26]  János Komlós,et al.  Sorting in c log n parallel sets , 1983, Comb..

[27]  Mike Paterson,et al.  Improved sorting networks withO(logN) depth , 1990, Algorithmica.

[28]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[29]  Michael E. Saks,et al.  Tight Lower Bounds for the Online Labeling Problem , 2015, SIAM J. Comput..

[30]  Ian Parberry,et al.  The Pairwise Sorting Network , 1992, Parallel Process. Lett..