An inexact interior point method for optimization of differential algebraic systems

This paper presents an inexact factorization technique in the context of an interior point method for optimal control of systems described by Differential Algebraic Equations (DAEs). The proposed method is based on a numerically banded structure arising in the normal equations. The structure implies that banded factorization techniques can be used to calculate inexact Newton directions at a low computational cost. Numerical experiments show that a narrow band in the normal equations can be selected without impeding the convergence of the method.

[1]  Moritz Diehl,et al.  A parallel quadratic programming method for dynamic optimization problems , 2015, Math. Program. Comput..

[2]  Stephen P. Boyd,et al.  Fast Model Predictive Control Using Online Optimization , 2010, IEEE Transactions on Control Systems Technology.

[3]  M. Diehl,et al.  Airborne Wind Energy , 2023, Green Energy and Technology.

[4]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[5]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[6]  J. Betts,et al.  A sparse nonlinear optimization algorithm , 1994 .

[7]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[8]  Sebastien Gros,et al.  Numerical Structure of the Hessian of the Lagrange Dual Function for a Class of Convex Problems , 2017, SIAM J. Control. Optim..

[9]  K. Belarbi,et al.  Nonlinear model predictive control of quadcopter , 2015, 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA).

[10]  Moritz Diehl,et al.  Modeling of Airborne Wind Energy Systems in Natural Coordinates , 2013 .

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[13]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[14]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[15]  D. Himmelblau,et al.  Optimal control via collocation and non-linear programming , 1975 .

[16]  Lorenz T. Biegler,et al.  Optimizing process economics online using model predictive control , 2013, Comput. Chem. Eng..

[17]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applications , 2003, Comput. Chem. Eng..

[18]  Lars Imsland,et al.  Efficient implementation of solvers for linear model predictive control on embedded devices , 2014, 2014 IEEE Conference on Control Applications (CCA).

[19]  John Bagterp Jørgensen,et al.  A Family of High-Performance Solvers for Linear Model Predictive Control , 2014 .

[20]  L. Biegler,et al.  A reduced space interior point strategy for optimization of differential algebraic systems , 2000 .

[21]  Lorenz T. Biegler,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2018 .

[22]  Manfred Morari,et al.  Efficient interior point methods for multistage problems arising in receding horizon control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[23]  J. Lévine,et al.  Modelling, Flatness and Simulation of a Class of Cranes , 1999 .

[24]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .