What is an adjoint model

Adjoint models are powerful tools for many studies that require an estimate of sensitivity of model output (e.g., a forecast) with respect to input. Actual fields of sensitivity are produced directly and efficiently, which can then be used in a variety of applications, including data assimilation, parameter estimation, stability analysis, and synoptic studies. The use of adjoint models as tools for sensitivity analysis is described here using some simple mathematics. An example of sensitivity fields is presented along with a short description of adjoint applications. Limitations of the applications are discussed and some speculations about the future of adjoint models are offered.

[1]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[2]  Y. Sasaki,et al.  Proposed Inclusion of Time . Variation Terms, Observational and Theoretical, in Numerical Variational Objective Analysis , 1969 .

[3]  E. Lorenz,et al.  The predictability of a flow which possesses many scales of motion , 1969 .

[4]  Richard Asselin,et al.  Frequency Filter for Time Integrations , 1972 .

[5]  H. Davies,et al.  Updating prediction models by dynamical relaxation - An examination of the technique. [for numerical weather forecasting] , 1977 .

[6]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[7]  R. V. Madala Efficient Time Integration Schemes for Atmosphere and Ocean Models , 1981 .

[8]  D. Book,et al.  Finite-difference techniques for vectorized fluid dynamics calculations , 1981 .

[9]  Dan G. Cacuci,et al.  Sensitivity Analysis of a Radiative-Convective Model by the Adjoint Method , 1982 .

[10]  W. Bourke,et al.  A Nonlinear Vertical Mode Initialization Scheme for a Limited Area Prediction Model , 1983 .

[11]  J. M. Lewis,et al.  The use of adjoint equations to solve a variational adjustment problem with advective constraints , 1985 .

[12]  J. Hack,et al.  Description of the NCAR Community Climate Model (CCM1) , 1987 .

[13]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[14]  Y. Kuo,et al.  Description of the Penn State/NCAR Mesoscale Model: Version 4 (MM4) , 1987 .

[15]  Joseph Tribbia,et al.  The Reliability of Improvements in Deterministic Short-Range Forecasts in the Presence of Initial State and Modeling Deficiencies , 1988 .

[16]  Brian F. Farrell,et al.  Optimal Excitation of Neutral Rossby Waves , 1988 .

[17]  O. Talagrand,et al.  Short-range evolution of small perturbations in a barotropic model , 1988 .

[18]  J. Derber A Variational Continuous Assimilation Technique , 1989 .

[19]  P. Courtier,et al.  Variational assimilation of meteorological observations with the direct and adjoint shallow-water equations , 1990 .

[20]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[21]  R. Daley Atmospheric Data Analysis , 1991 .

[22]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[23]  Ronald M. Errico,et al.  Sensitivity Analysis Using an Adjoint of the PSU-NCAR Mesoseale Model , 1992 .

[24]  Philippe Courtier,et al.  An application of adjoint models to sensitivity analysis , 1992 .

[25]  Ronald M. Errico,et al.  Examination of the accuracy of a tangent linear model , 1993 .

[26]  D. Zupanski,et al.  The effects of discontinuities in the Betts’Miller cumulus convection scheme on four-dimensional variational data assimilation , 1993 .

[27]  Milija Zupanski,et al.  Regional Four-Dimensional Variational Data Assimilation in a Quasi-Operational Forecasting Environment , 1993 .

[28]  Franco Molteni,et al.  Predictability and finite‐time instability of the northern winter circulation , 1993 .

[29]  William R. Cotton,et al.  Fitting Microphysical Observations of Nonsteady Convective Clouds to a Numerical Model: An Application of the Adjoint Technique of Data Assimilation to a Kinematic Model , 1993 .

[30]  Philippe Courtier,et al.  Interactions of Dynamics and Observations in a Four-Dimensional Variational Assimilation , 1993 .

[31]  Nicole Rostaing,et al.  Automatic differentiation in Odyssée , 1993 .

[32]  Ionel M. Navon,et al.  Variational data assimilation with moist threshold processes using the NMC spectral model , 1993 .

[33]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[34]  T. Vukicevic,et al.  Mesoscale Adjoint Modeling System: Version 1 , 1994 .

[35]  David P. Baumhefner,et al.  Monte Carlo Simulations of Explosive Cyclogenesis , 1994 .

[36]  Ronald M. Errico,et al.  Evaluation of physical processes in an idealized extratropical cyclone using adjoint sensitivity , 1995 .

[37]  Christian Bischof,et al.  Automatic differentiation, tangent linear models, and (pseudo) adjoints , 1995 .

[38]  Jan Barkmeijer,et al.  Perturbations that optimally trigger weather regimes , 1995 .

[39]  Ronald M. Errico,et al.  Mesoscale Predictability and the Spectrum of Optimal Perturbations , 1995 .

[40]  Qin Xu Generalized Adjoint for Physical Processes with Parameterized Discontinuities. Part I: Basic Issues and Heuristic Examples , 1996 .

[41]  Brian F. Farrell,et al.  Generalized Stability Theory. Part II: Nonautonomous Operators , 1996 .

[42]  Philippe Courtier,et al.  Dynamical structure functions in a four‐dimensional variational assimilation: A case study , 1996 .

[43]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model , 1996 .

[44]  Philippe Courtier,et al.  Sensitivity of forecast errors to initial conditions , 1996 .

[45]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[46]  Luc Fillion,et al.  Variational Assimilation of Precipitation Data Using Moist Convective Parameterization Schemes: A 1D-Var Study , 1997 .

[47]  T. Palmer,et al.  Singular Vectors, Metrics, and Adaptive Observations. , 1998 .

[48]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[49]  C.,et al.  Analysis methods for numerical weather prediction , 2022 .