Influence of Thermal Exposure on the Microstructure Evolution and Mechanical Behaviors of an Al-Cu-Li Alloy

[1]  Yao Li,et al.  Detailed investigation on high temperature mechanical properties of AA2050 Al–Cu–Li alloys , 2022, Materials Science & Engineering: A.

[2]  Ji-shan Zhang,et al.  The effect of Ag on the tensile strength and fracture toughness of novel Al-Mg-Zn alloys , 2022, Journal of Alloys and Compounds.

[3]  A. Deschamps,et al.  Precipitation kinetics in metallic alloys: Experiments and modeling , 2021, Acta Materialia.

[4]  Guoai He,et al.  Quantitative contribution of T1 phase to the strength of Al-Cu-Li alloys , 2021, Journal of Materials Science.

[5]  J. Kuang,et al.  Impact of thermal exposure on the microstructure and mechanical properties of a twin-roll cast Al-Mn-Fe-Si strip , 2021, Journal of Materials Science & Technology.

[6]  C. Larignon,et al.  Long-term thermal ageing of the 2219-T851 and the 2050-T84 Al-Cu alloys , 2021, Materials Today Communications.

[7]  Guoqun Zhao,et al.  Precipitation behavior of an Al–Cu–Li–X alloy and competing relationships among precipitates at different aging temperatures , 2021, Materials Science and Engineering: A.

[8]  Yunlong Ma,et al.  Quench sensitivity and microstructure evolution of the 2060 Al-Cu-Li alloy with a low Mg content , 2021, Materials Characterization.

[9]  Hongwei Zhao,et al.  Effects of cold temperatures, strain rates and anisotropy on the mechanical behavior and fracture morphology of an Al–Zn–Mg–Cu alloy , 2021 .

[10]  S. Kuramoto,et al.  Unraveling the effect of dislocations and deformation-induced boundaries on environmental hydrogen embrittlement behavior of a cold-rolled Al–Zn–Mg–Cu alloy , 2021 .

[11]  Lanzhang Zhou,et al.  Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure , 2021 .

[12]  Yun-lai Deng,et al.  Effect of asymmetric rolling and subsequent ageing on the microstructure, texture and mechanical properties of the Al-Cu-Li alloy , 2020 .

[13]  F. Czerwinski Thermal Stability of Aluminum Alloys , 2020, Materials.

[14]  Xianfeng Li,et al.  Interactions between cadmium and multiple precipitates in an Al-Li-Cu alloy: Improving aging kinetics and precipitation hardening , 2020 .

[15]  F. Shen,et al.  Effect of Ag addition on the age hardening and precipitation behavior in an Al-Cu-Li-Mg-Zn-Mn-Zr alloy , 2020 .

[16]  Guoqun Zhao,et al.  Microstructure evolution and mechanical properties of 2196 Al-Li alloy in hot extrusion process , 2020 .

[17]  Yan-qing Yang,et al.  Thermal stability analysis of a lightweight Al-Zn-Mg-Cu alloy by TEM and tensile tests , 2019, Materials Characterization.

[18]  A. Taheri,et al.  Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective , 2019, Journal of Alloys and Compounds.

[19]  F. Shen,et al.  Effect of aging time on the microstructure evolution and mechanical property in an Al-Cu-Li alloy sheet , 2019, Materials Science and Engineering: A.

[20]  L. Ceschini,et al.  High Temperature Tensile Tests of the Lightweight 2099 and 2055 Al-Cu-Li Alloy: A Comparison , 2018, JOM.

[21]  Guoqun Zhao,et al.  Microstructures and mechanical properties of spray deposited 2195 Al-Cu-Li alloy through thermo-mechanical processing , 2018, Materials Science and Engineering: A.

[22]  Zhiyi Liu,et al.  Effect of S phase characteristics on the formation of recrystallization textures of an Al-Cu-Mg alloy , 2018 .

[23]  Yong-bo Xu,et al.  Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review , 2017, Journal of advanced research.

[24]  L. Ceschini,et al.  Effects of overaging on microstructure and tensile properties of the 2055 Al-Cu-Li-Ag alloy , 2017 .

[25]  R. Kaibyshev,et al.  Precipitation structure and strengthening mechanisms in an Al-Cu-Mg-Ag alloy , 2017 .

[26]  L. Ceschini,et al.  Thermal stability of the lightweight 2099 Al-Cu-Li alloy: Tensile tests and microstructural investigations after overaging , 2017 .

[27]  A. Deschamps,et al.  Influence of Mg and Li content on the microstructure evolution of Al Cu Li alloys during long-term ageing , 2017 .

[28]  Ke Huang,et al.  A review of dynamic recrystallization phenomena in metallic materials , 2016 .

[29]  P. Prangnell,et al.  Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195 , 2016 .

[30]  Guohua Wu,et al.  Microstructural evolution and mechanical properties of cast Al-3Li-1.5Cu-0.2Zr alloy during heat treatment , 2016 .

[31]  L. Zhuang,et al.  Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al–Zn–Mg–Cu alloys , 2016 .

[32]  Hui Chen,et al.  Effect of composition on tensile properties and fracture toughness of Al–Zn–Mg alloy (A7N01S-T5) used in high speed trains , 2016 .

[33]  S. Duan,et al.  Complex Precipitation Sequences of Al-Cu-Li-(Mg) Alloys Characterized in Relation to Thermal Ageing Processes , 2016, Acta Metallurgica Sinica (English Letters).

[34]  J. Schoenung,et al.  Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al–Zn–Mg alloys , 2016 .

[35]  T. Dorin,et al.  Size distribution and volume fraction of T(1) phase precipitates from TEM images: Direct measurements and related correction. , 2015, Micron.

[36]  Xinyun Wang,et al.  A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation , 2015 .

[37]  W. Zeng,et al.  Ageing response of a Al–Cu–Li 2198 alloy , 2014 .

[38]  Z. Zhang,et al.  Effects of heat treatment on the microstructure and mechanical properties of AA2618 DC cast alloy , 2014 .

[39]  T. Dorin,et al.  Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy , 2014 .

[40]  Ze Zhang,et al.  The structure determination of Al20Cu2Mn3 by near atomic resolution chemical mapping , 2014 .

[41]  T. Dorin,et al.  Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al-Cu-Li alloy , 2014 .

[42]  T. Dorin,et al.  Quantitative description of the T1 formation kinetics in an Al–Cu–Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy , 2014 .

[43]  A. Deschamps,et al.  On the role of microstructure in governing fracture behavior of an aluminum–copper–lithium alloy , 2013 .

[44]  J. Hoyt The velocity of plate precipitates growing by the ledge mechanism , 2013 .

[45]  Zainul Huda,et al.  Materials selection in design of structures and engines of supersonic aircrafts: A review , 2013 .

[46]  L. Bourgeois,et al.  Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al-Cu-Li-Mg-Ag alloy. , 2011, Ultramicroscopy.

[47]  S. Ringer,et al.  Solute Diffusion Characteristics of a Rapid Hardening Al-Cu-Mg Alloy during the Early Stages of Age Hardening , 2010 .

[48]  Min Song,et al.  Multi-scale model for the ductility of multiple phase materials , 2009 .

[49]  J. Robinson,et al.  Effect of cold compression on precipitation and conductivityof an Al–Li–Cu alloy , 2008, Journal of microscopy.

[50]  I. Cvijović-Alagić,et al.  Micromechanical model for fracture toughness prediction in Al–Zn–Mg–Cu alloy forgings , 2008 .

[51]  Zhiyi Liu,et al.  Microstructure and properties of Al-Cu-Mg-Ag alloy exposed at 200 °C with and without stress , 2008 .

[52]  C. Gür,et al.  Utilization of Non-destructive Methods for Determining the Effect of Age-Hardening on Impact Toughness of 2024 Al–Cu–Mg Alloy , 2008 .

[53]  O. Es-Said,et al.  The effect of thermal exposure on the mechanical properties of 2099-T6 die forgings, 2099-T83 extrusions, 7075-T7651 plate, 7085-T7452 die forgings, 7085-T7651 plate, and 2397-T87 plate aluminum alloys , 2006 .

[54]  N. Nayan,et al.  Development and characterization of Al–Li alloys , 2006 .

[55]  O. Es-Said,et al.  The effects of prolonged thermal exposure on the mechanical properties and fracture toughness of C458 aluminum–lithium alloy , 2006 .

[56]  J. Szpunar,et al.  Stored Energy and Taylor Factor Relation in an Al-Mg-Mn Alloy Sheet Worked by Continuous Cyclic Bending , 2004 .

[57]  F. J. Humphreys,et al.  The transition from discontinuous to continuous recrystallization in some aluminium alloys: II – annealing behaviour , 2004 .

[58]  Y. Chang,et al.  Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation , 2003 .

[59]  E. Abe,et al.  Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the θ′ and T1 phases , 2003 .

[60]  L. Höglund,et al.  Diffusion-controlled lengthening of Widmanstatten plates , 2003 .

[61]  J. Robson Optimizing the homogenization of zirconium containing commercial aluminium alloys using a novel process model , 2002 .

[62]  F. Bénière Diffusion in Solids , 2001 .

[63]  Mark F. Horstemeyer,et al.  A void–crack nucleation model for ductile metals , 1999 .

[64]  Z. Zheng,et al.  Independent and combined roles of trace Mg and Ag additions in properties precipitation process and precipitation kinetics of Al-Cu-Li-(Mg)-(Ag)-Zr-Ti alloys , 1998 .

[65]  D. S. Zhou,et al.  Effect of variation in the Cu:Mg ratios on the formation of T2 and C phases in AA 8090 alloys , 1992 .

[66]  E. Starke,et al.  Mechanism of Al2CuLi (T1) nucleation and growth , 1991 .

[67]  M. F. Ashby,et al.  A process model for age hardening of aluminium alloys—I. The model , 1990 .

[68]  E. Ryba,et al.  The nature of microcrystalline regions produced by an in situ transformation of T2 particles in a ternary Al-2.5%Li-2.5%Cu alloy , 1989 .

[69]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[70]  J. D. Boyd,et al.  The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys , 1971 .

[71]  H. Aaronson,et al.  The volume free energy change associated with precipitate nucleation , 1970 .