Variational Bayesian inference for quantification of brain PET data at the voxel level

PET is a functional nuclear medicine imaging technique widely used to study in vivo physiological processes in the body, which are targeted by an appropriate tracer, as those used in this study: [11C](R)-rolipram, [11C]WAY100635, [11C]PBR28. The purpose of this work is to evaluate, at the voxel level, the performance of a Bayesian method never used before in PET domain: the Variationa Bayes method. In this study analysis on both simulated and real data are presented. VB is compared with WNLLS

[1]  Andrej Pázman,et al.  Nonlinear Regression , 2019, Handbook of Regression Analysis With Applications in R.

[2]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[3]  Jeih-San Liow,et al.  Kinetic analysis in human brain of 11C-(R)-rolipram, a PET tracer of the cAMP cascade: Test-retest study and the use of an image-derived input function , 2010 .

[4]  J. Gatliff,et al.  The 18 kDa translocator protein (TSPO): a new perspective in mitochondrial biology. , 2012, Current molecular medicine.

[5]  Jeih-San Liow,et al.  PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[7]  R H Huesman,et al.  Dynamic PET Data Analysis , 1986, Journal of computer assisted tomography.

[8]  John S. J. Hsu,et al.  Bayesian Marginal Inference , 1989 .

[9]  Alessandra Bertoldo,et al.  Multi-scale hierarchical approach for parametric mapping: Assessment on multi-compartmental models , 2013, NeuroImage.

[10]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[11]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .

[12]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[13]  Mark W. Woolrich,et al.  Variational Bayesian Inference for a Nonlinear Forward Model , 2020, IEEE Transactions on Signal Processing.

[14]  Vincent J. Cunningham,et al.  Parametric Imaging of Ligand-Receptor Binding in PET Using a Simplified Reference Region Model , 1997, NeuroImage.

[15]  C. Halldin,et al.  Localization of 5-HT1A receptors in the living human brain using [carbonyl-11C]WAY-100635: PET with anatomic standardization technique. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[16]  Henri P. Gavin,et al.  The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems c © , 2013 .

[17]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[18]  Alessandra Bertoldo,et al.  Kinetic Modeling without Accounting for the Vascular Component Impairs the Quantification of [11C]PBR28 Brain PET Data , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  Jürgen Linseisen,et al.  THE INTERIOR , 2010 .

[20]  M. Veronese,et al.  Voxelwise Quantification of [11C](R)-Rolipram PET Data: A Comparison Between Model-Based and Data-Driven Methods , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[21]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[22]  C. Cobelli,et al.  Evaluation of compartmental and spectral analysis models of [/sup 18/F]FDG kinetics for heart and brain studies with PET , 1998, IEEE Transactions on Biomedical Engineering.

[23]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .