Solid-state 3 He NMR of the superconducting rubidium endofulleride Rb 3 ( 3 He@C 60 ).

A new variant of the superconducting fulleride $\mathrm{Rb_{3}C_{60}}$ is presented, with $\mathrm{^{3}He}$ atoms encapsulated in the $\mathrm{C_{60}}$ cages. The $\mathrm{^{3}He}$ nuclei act as sensitive NMR probes embedded in the material. The superconducting and normal states are characterised by $\mathrm{^{3}He}$ NMR. Evidence is found for co-existing vortex liquid and vortex solid phases below the superconducting transition temperature. A strong dependence of the spin-lattice relaxation time constant on spectral frequency is observed in the superconducting state, as revealed by two-dimensional NMR utilising an inverse Laplace transform. Surprisingly, this phenomenon persists, in attenuated form, at temperatures well above the superconducting transition.

[1]  U. Nagel,et al.  Ne, Ar, and Kr oscillators in the molecular cavity of fullerene C60. , 2023, The Journal of chemical physics.

[2]  S. Rols,et al.  A combined inelastic neutron scattering and simulation study of the 3He@C60 endofullerene , 2023, Physical chemistry chemical physics : PCCP.

[3]  Sally Bloodworth,et al.  Synthesis of endohedral fullerenes by molecular surgery , 2022, Communications Chemistry.

[4]  G. Tizzard,et al.  Synthesis and 83Kr NMR spectroscopy of Kr@C60. , 2022, Chemical communications.

[5]  U. Nagel,et al.  Terahertz spectroscopy of the helium endofullerene He@C60. , 2022, Physical chemistry chemical physics : PCCP.

[6]  A. Cavalleri,et al.  Superconducting fluctuations observed far above T$_\mathrm{c}$ in the isotropic superconductor K$_3$C$_{60}$ , 2021, 2109.08679.

[7]  Astronomy,et al.  Experimental determination of the interaction potential between a helium atom and the interior surface of a C60 fullerene molecule. , 2021, The Journal of chemical physics.

[8]  Ville-Veikko Telkki,et al.  Ultrafast methods for relaxation and diffusion. , 2021, Progress in nuclear magnetic resonance spectroscopy.

[9]  Yongjun Li,et al.  Infrared spectroscopy of an endohedral water in fullerene. , 2021, The Journal of chemical physics.

[10]  John Gräsvik,et al.  A Solid‐State Intramolecular Wittig Reaction Enables Efficient Synthesis of Endofullerenes Including Ne@C60, 3He@C60, and HD@C60 , 2021, Angewandte Chemie.

[11]  Sally Bloodworth,et al.  An internuclear J-coupling of 3He induced by molecular confinement. , 2020, Journal of the American Chemical Society.

[12]  G. Bacanu,et al.  Fine structure in the solution state 13C-NMR spectrum of C60 and its endofullerene derivatives. , 2020, Physical chemistry chemical physics : PCCP.

[13]  M. Light,et al.  First Synthesis and Characterization of CH4@C60 , 2019, Angewandte Chemie.

[14]  Mark R. Johnson,et al.  The dipolar endofullerene HF@C60. , 2016, Nature chemistry.

[15]  R. Bounds Nuclear magnetic resonance of novel type-II superconductors. , 2016 .

[16]  M. Levitt,et al.  Electrical detection of ortho–para conversion in fullerene-encapsulated water , 2015, Nature Communications.

[17]  Kosmas Prassides,et al.  Optimized unconventional superconductivity in a molecular Jahn-Teller metal , 2015, Science Advances.

[18]  S. Oh,et al.  Nuclear magnetic resonance studies of vortices in high temperature superconductors , 2011, 1112.3632.

[19]  J. Fischer,et al.  Synthesis, Structure and Superconducting Properties of Single-Phase Rb3C60. A New, Convenient Method for the Preparation of M3C60 Superconductors. , 2010 .

[20]  Y. Ohishi,et al.  The Disorder-Free Non-BCS Superconductor Cs3C60 Emerges from an Antiferromagnetic Insulator Parent State , 2009, Science.

[21]  S. Jockusch,et al.  Demonstration of a chemical transformation inside a fullerene. The reversible conversion of the allotropes of H2@C60. , 2008, Journal of the American Chemical Society.

[22]  K. Ishida,et al.  Site-selective NMR study of the vortex state in an s-wave superconductor , 2008 .

[23]  L. Frydman,et al.  Relaxation-assisted separation of chemical sites in NMR spectroscopy of static solids. , 2003, Journal of the American Chemical Society.

[24]  M. Rosseinsky,et al.  Superconductivity in Expanded fcc C603- Fullerides. , 2001 .

[25]  H. Brom,et al.  NMR in Metals, Metal Particles and Metal Cluster Compounds , 2000 .

[26]  C. Pennington,et al.  Nuclear Magnetic Resonance of C60 and Fulleride Superconductors , 1997 .

[27]  O. Gunnarsson Superconductivity in fullerides , 1996, cond-mat/9611150.

[28]  Weidinger,et al.  Observation of Atomlike Nitrogen in Nitrogen-Implanted Solid C60. , 1996, Physical review letters.

[29]  Fischer,et al.  Vortex dynamics in Rb3C60 observed by 87Rb and 13C NMR. , 1996, Physical review. B, Condensed matter.

[30]  C. Pennington,et al.  Nuclear magnetic resonance of C-60 and fulleride superconductors , 1996 .

[31]  Lee,et al.  13C NMR hyperfine couplings, T1 anisotropy, and Korringa relations in Rb2CsC60: Search for effects of strong correlation. , 1996, Physical review. B, Condensed matter.

[32]  Y. Tomioka,et al.  The Meissner and shielding effects of high-temperature oxide superconductors , 1994 .

[33]  V. Crespi,et al.  Superconducting Properties of K3C60 and Rb3C60 Single Crystals in High Fields , 1994 .

[34]  Martin Saunders,et al.  Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure , 1994 .

[35]  P. Bernier,et al.  Analysis of 87Rb and 13C hyperfine interaction in Rb3C60 , 1993 .

[36]  Jing-Huei Lee,et al.  Two-dimensional inverse Laplace transform NMR: altered relaxation times allow detection of exchange correlation , 1993 .

[37]  D. Cox,et al.  Structures of C60 intercalation compounds , 1992 .

[38]  Fleming,et al.  Electronic properties of normal and superconducting alkali fullerides probed by 13C nuclear magnetic resonance. , 1992, Physical review letters.

[39]  C. Politis,et al.  PENETRATION DEPTH AND COHERENCE LENGTH IN SUPERCONDUCTING FULLERENE Rb3C60 , 1992 .

[40]  Brandt Magnetic-field variance in layered superconductors. , 1991, Physical review letters.

[41]  A. Kortan,et al.  Superconductivity at 28 K in RbxC60. , 1991, Physical review letters.

[42]  R. Kaner,et al.  Alkali-Fulleride Superconductors: Synthesis, Composition, and Diamagnetic Shielding , 1991, Science.

[43]  D. Murphy,et al.  Superconductivity at 18 K in potassium-doped C60 , 1991, Nature.

[44]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . II , 1966 .

[45]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[46]  John Gräsvik,et al.  A Solid‐State Intramolecular Wittig Reaction Enables Efficient Synthesis of Endofullerenes Including Ne@C 60 , 3 He@C 60 , and HD@C 60 , 2021, Angewandte Chemie.

[47]  T. B. Moraes TRANSFORMADA INVERSA DE LAPLACE PARA ANÁLISE DE SINAIS DE RESSONÂNCIA MAGNÉTICA NUCLEAR DE BAIXO CAMPO , 2021 .

[48]  C. Slichter,et al.  The Study of Mechanisms of Superconductivity by NMR Relaxation , 2006 .

[49]  M. Saunders,et al.  Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70 , 1994, Nature.

[50]  D. Cox,et al.  STRUCTURES OF C 60 INTERCALATION COMPOUNDS , 1993 .

[51]  D. MacLaughlin Magnetic resonance in the superconducting state , 1976 .

[52]  A. Redfield,et al.  Nuclear Spin-Lattice Relaxation in Superconducting Aluminum , 1962 .