Recent developments in the PQS program

An overview of the PQS quantum chemistry suite is presented, with emphasis on recent developments and features that are unique to the program. The capabilities of the program, in particular the parallel implementation, are briefly described. Topics discussed in more detail are coupled‐cluster and other high‐level correlation methods, second‐order Møller–Plesset perturbation theory for large molecules, the Fourier transform Coulomb method, geometry optimization, in particular constrained and enforced geometry optimization, and properties such as vibrational circular dichroism, scaled quantum mechanical force fields, spin densities, and spatially modulated polarizabilities. © 2011 John Wiley & Sons, Ltd.

[1]  J. Baker,et al.  Geometry optimization in the presence of external forces: a theoretical model for enforced structural changes in molecules , 2010 .

[2]  Peter Pulay,et al.  Accurate correlated calculation of the intermolecular potential surface in the coronene dimer , 2010 .

[3]  J. Baker,et al.  Theoretical predictions of enforced structural changes in molecules , 2009 .

[4]  M Pitoňák,et al.  Convergence of the CCSD(T) Correction Term for the Stacked Complex Methyl Adenine-Methyl Thymine: Comparison with Lower-Cost Alternatives. , 2009, Journal of chemical theory and computation.

[5]  Tomasz Janowski,et al.  Quantum chemistry in parallel with PQS , 2009, J. Comput. Chem..

[6]  P. Pulay,et al.  Efficient calculation of the energy of a molecule in an arbitrary electric field , 2009 .

[7]  Jon Baker,et al.  Parallel DFT gradients using the Fourier Transform Coulomb method , 2007, J. Comput. Chem..

[8]  Peter Pulay,et al.  High accuracy benchmark calculations on the benzene dimer potential energy surface , 2007 .

[9]  Peter Pulay,et al.  Parallel Calculation of Coupled Cluster Singles and Doubles Wave Functions Using Array Files. , 2007, Journal of chemical theory and computation.

[10]  Tomasz Janowski,et al.  Array files for computational chemistry: MP2 energies , 2007, J. Comput. Chem..

[11]  György Tarczay,et al.  Towards the determination of the absolute configuration of complex molecular systems: matrix isolation vibrational circular dichroism study of (R)-2-amino-1-propanol. , 2006, Angewandte Chemie.

[12]  Shawn T. Brown,et al.  Efficient computation of the exchange-correlation contribution in the density functional theory through multiresolution. , 2006, The Journal of chemical physics.

[13]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[14]  Jon Baker,et al.  Parallel Density Functional Theory Energies using the Fourier Transform Coulomb Method , 2004 .

[15]  Peter Pulay,et al.  The Fourier transform Coulomb method: Efficient and accurate calculation of the Coulomb operator in a Gaussian basis , 2002 .

[16]  Jon Baker,et al.  An efficient parallel algorithm for the calculation of canonical MP2 energies , 2002, J. Comput. Chem..

[17]  Peter Pulay,et al.  Efficient calculation of canonical MP2 energies , 2001 .

[18]  P. Pulay,et al.  Density functional implementation of a Gaussian-weighted operator for spin densities , 2000 .

[19]  Michele Parrinello,et al.  The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations , 1999 .

[20]  A. Oberhauser,et al.  Atomic levers control pyranose ring conformations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Jon Baker,et al.  Direct Scaling of Primitive Valence Force Constants: An Alternative Approach to Scaled Quantum Mechanical Force Fields , 1998 .

[22]  JON BAKER,et al.  Constrained optimization in delocalized internal coordinates , 1997, J. Comput. Chem..

[23]  Jon Baker,et al.  Geometry optimization of atomic microclusters using inverse‐power distance coordinates , 1996 .

[24]  Jon Baker,et al.  The generation and use of delocalized internal coordinates in geometry optimization , 1996 .

[25]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[26]  Peter Pulay,et al.  Geometry optimization in redundant internal coordinates , 1992 .

[27]  Alistair P. Rendell,et al.  A parallel vectorized implementation of triple excitations in CCSD(T): application to the binding energies of the AlH3, AlH2F, AlHF2 and AlF3 dimers , 1991 .

[28]  Peter Pulay,et al.  An efficient reformulation of the closed‐shell self‐consistent electron pair theory , 1984 .

[29]  P. Pulay,et al.  Combination of Theoretical ab Initio and Experimental Information To Obtain Reliable Harmonic Force Constants. Scaled Quantum Mechanical (SQM) Force Fields for Glyoxal, Acrolein, Butadiene, Formaldehyde, and Ethylene. , 1984 .

[30]  Peter Pulay,et al.  Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene , 1983 .

[31]  James J. P. Stewart,et al.  Fast semiempirical calculations , 1982 .

[32]  P. Pulay An efficient ab initio gradient program , 1979 .

[33]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[34]  Wilfried Meyer,et al.  Theory of self‐consistent electron pairs. An iterative method for correlated many‐electron wavefunctions , 1976 .

[35]  P. Stephens,et al.  Vibrational Circular Dichroism , 1976 .

[36]  W. Meyer Calculation of Fermi Contact Hyperfine Splitting for Small Atoms and Molecules , 1969 .