Langevin dynamics in constant pressure extended systems.

The advantages of performing Langevin dynamics in extended systems are discussed. A simple Langevin dynamics scheme for producing the canonical ensemble is reviewed, and is then extended to the Hoover ensemble. We show that the resulting equations of motion generate the isobaric-isothermal ensemble. The Parrinello-Rahman ensemble is then discussed and we show that despite the presence of intrinsic probability gradients in this system, a Langevin dynamics approach samples the extended phase space in the correct fashion. The implementation of these methods in the ab initio plane wave density functional theory code CASTEP [M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clarke, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 (2003)] is demonstrated.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[3]  R. L. Stratonovich,et al.  Topics in the theory of random noise , 1967 .

[4]  R. G. Medhurst,et al.  Topics in the Theory of Random Noise , 1969 .

[5]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[6]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[7]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[8]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[9]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[10]  Hoover,et al.  Constant-pressure equations of motion. , 1986, Physical review. A, General physics.

[11]  C. Brooks Computer simulation of liquids , 1989 .

[12]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[13]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[14]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[15]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[16]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[17]  A. Kolb,et al.  Optimized Constant Pressure Stochastic Dynamics , 1999 .

[18]  Stephen D. Bond,et al.  The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics , 1999 .

[19]  M. Tuckerman,et al.  On the classical statistical mechanics of non-Hamiltonian systems , 1999 .

[20]  Brian B. Laird,et al.  Symplectic algorithm for constant-pressure molecular dynamics using a Nosé–Poincaré thermostat , 2000 .

[21]  Konrad Hinsen,et al.  Computing memory functions from molecular dynamics simulations , 2001 .

[22]  G. Ciccotti,et al.  Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems , 2001 .

[23]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[24]  Generalization of the Nosé-Hoover approach , 2003 .

[25]  Konrad Hinsen,et al.  nMOLDYN: A program package for a neutron scattering oriented analysis of Molecular Dynamics simulations , 1995 .

[26]  B. Leimkuhler,et al.  Generalized dynamical thermostating technique. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Kenichiro Aoki,et al.  Time-reversible deterministic thermostats , 2004 .