Automatic adaptive refinement finite element procedure for 3D stress analysis

Abstract An automatic adaptive refinement procedure for 3D finite element analysis is presented. Based on a carefully designed procedure to eliminate the instability of the superconvergent patch recovery technique, accurate smoothed stress field for 3D elasticity problem can be established. Well graded adaptive tetrahedral meshes with node spacing compatible withthe specifications as required by the refinement strategy are generated by newly developed mesh refinement scheme. Iterative solution solver employing the preconditioned conjugate gradient technique is used for the solution of large system of simultaneous equations. Practical examples solved by using the quadratic T10 tetrahedral element indicate that the procedure is reliable and effective. Even in the presence of singularities, the optimal convergence rate is achieved and the asymptotic convergence of the error estimator is also observed. Numerical results in this study demonstrate that by combining theoretical derivations with appropriate computation algorithms, it is completely feasible to carry out automatic adaptive analyses even for full 3D problems. Many advantages of the adaptive refinement over the traditional one-pass finite element analysis or uniform refinement are revealed, especially when the exact solution of the problem is difficult and singular points are present inside the problem domain.

[1]  Mark S. Shephard,et al.  Superconvergent boundary stress extraction and some experiments with adaptive pointwise error control , 1994 .

[2]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[3]  Kent L. Lawrence,et al.  A study of adaptively remeshed finite element problems using higher order tetrahedra , 1995 .

[4]  S. H. Lo,et al.  3D mesh refinement in compliance with a specified node spacing function , 1998 .

[5]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[6]  O. C. Zienkiewicz,et al.  Error estimates and adaptive refinement for plate bending problems , 1989 .

[7]  Ivo Babuška,et al.  The Post-Processing Approach in the Finite Element Method. Part 3. A Posteriori Error Estimates and Adaptive Mesh Selection. , 1984 .

[8]  Pierre Ladevèze,et al.  Mesh optimization for problems with steep gradients , 1994 .

[9]  Ted Belytschko,et al.  Derivative recovery techniques for C° plate problems , 1994 .

[10]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[11]  G. Touzot,et al.  An iterative algorithm to build continuous stress and displacement solutions , 1978 .

[12]  I. Babuska,et al.  The problem of plate modeling: theoretical and computational results , 1992 .

[13]  J. Fish The s-version of the finite element method , 1992 .

[14]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[15]  Chi King Lee,et al.  On using meshes of mixed element types in adaptive finite element analysis , 1992 .

[16]  Gabriel Bugeda,et al.  A STUDY OF MESH OPTIMALITY CRITERIA IN ADAPTIVE FINITE ELEMENT ANALYSIS , 1993 .

[17]  K. L. Lawrence,et al.  Closed-form stiffness matrices for the linear strain and quadratic strain tetrahedron finite elements , 1992 .

[18]  Mark S. Shephard,et al.  Superconvergent extraction techniques for finite element analysis , 1993 .

[19]  O. C. Zienkiewicz,et al.  Error estimation and adaptivity in flow formulation for forming problems , 1988 .

[20]  Chang-Koon Choi,et al.  An adaptive h‐refinement using transition element for plate bending problems , 1992 .

[21]  C. Lee,et al.  An automatic adaptive refinement finite element procedure for 2D elastostatic analysis , 1992 .

[22]  N. Wiberg,et al.  A posteriori error estimate by element patch post-processing, adaptive analysis in energy and L2 norms , 1994 .

[23]  Sh Lo,et al.  On robust implementation of the superconvergent patch recovery technique , 1993 .

[24]  Kjell Magne Mathisen,et al.  Towards automatic adaptive geometrically non-linear shell analysis. Part I: Implementation of anh-adaptive mesh refinement procedure , 1994 .

[25]  Renato Perucchio,et al.  A self‐adaptive fe system based on recursive spatial decomposition and multigrid analysis , 1995 .

[26]  Joseph E. Flaherty,et al.  a posteriori Error estimation for triangular and tetrahedral quadratic elements using interior residuals , 1992 .

[27]  Ted Belytschko,et al.  Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .

[28]  Robert D. Cook,et al.  Improvement in peak stress estimates through post-processing , 1988 .

[29]  R. Cook,et al.  Continuous stress fields by the finite element–difference method , 1986 .

[30]  V. J. Burkley,et al.  Adaptive error analysis in seepage problems , 1991 .

[31]  O. C. Zienkiewicz,et al.  The Finite Element Method: Basic Formulation and Linear Problems , 1987 .

[32]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[33]  S. H. Lo,et al.  OPTIMIZATION OF TETRAHEDRAL MESHES BASED ON ELEMENT SHAPE MEASURES , 1997 .

[34]  M. Kitamura,et al.  Numerical investigation of element-wise a posteriori error estimation in two and three dimensional elastic problems , 1992 .

[35]  Ian R. Grosse,et al.  An adaptive accuracy-based a posteriori error estimator , 1992 .

[36]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[37]  On bandsolver using skyline storage , 1992 .

[38]  Ivo Babuška,et al.  On the Rates of Convergence of the Finite Element Method , 1982 .

[39]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[40]  O. Zienkiewicz,et al.  Finite element Euler computations in three dimensions , 1988 .

[41]  Nils-Erik Wiberg,et al.  Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .

[42]  V. Parthasarathy,et al.  Optimized/adapted finite elements for structural shape optimization , 1992 .

[43]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[44]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .