Hyper-Reactive Tabu Search for MaxSAT

Local search metaheuristics have been developed as a general tool for solving hard combinatorial search problems. However, in practice, metaheuristics very rarely work straight out of the box. An expert is frequently needed to experiment with an approach and tweak parameters, remodel the problem, and adjust search concepts to achieve a reasonably effective approach. Reactive search techniques aim to liberate the user from having to manually tweak all of the parameters of their approach. In this paper, we focus on one of the most well-known and widely used reactive techniques, reactive tabu search (RTS) [7], and propose a hyper-parameterized tabu search approach that dynamically adjusts key parameters of the search using a learned strategy. Experiments on MaxSAT show that this approach can lead to state-of-the-art performance without any expert user involvement, even when the metaheuristic knows nothing more about the underlying combinatorial problem than how to evaluate the objective function.

[1]  Carlos Ansótegui,et al.  Reactive Dialectic Search Portfolios for MaxSAT , 2017, AAAI.

[2]  Kevin Leyton-Brown,et al.  Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection , 2010, AAAI.

[3]  Ashiqur R. KhudaBukhsh,et al.  SATenstein: automatically building local search SAT solvers from components , 2009, IJCAI 2009.

[4]  Yuri Malitsky,et al.  MaxSAT by Improved Instance-Specific Algorithm Configuration , 2014, AAAI.

[5]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[6]  Mauro Brunato,et al.  Reactive Search and Intelligent Optimization , 2008 .

[7]  Patrick De Causmaecker,et al.  An Intelligent Hyper-Heuristic Framework for CHeSC 2011 , 2012, LION.

[8]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[9]  Sean Safarpour,et al.  Improved Design Debugging Using Maximum Satisfiability , 2007 .

[10]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[11]  Yoav Shoham,et al.  A portfolio approach to algorithm select , 2003, IJCAI 2003.

[12]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[13]  Jin-Kao Hao,et al.  A “Logic-Constrained” Knapsack Formulation and a Tabu Algorithm for the Daily Photograph Scheduling of an Earth Observation Satellite , 2001, Comput. Optim. Appl..

[14]  Meinolf Sellmann,et al.  The Accuracy of Search Heuristics: An Empirical Study on Knapsack Problems , 2008, CPAIOR.

[15]  Yuri Malitsky,et al.  Model-Based Genetic Algorithms for Algorithm Configuration , 2015, IJCAI.

[16]  Yuri Malitsky,et al.  ISAC - Instance-Specific Algorithm Configuration , 2010, ECAI.

[17]  Benjamin Doerr,et al.  Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings , 2015, GECCO.

[18]  Benjamin Doerr,et al.  Optimal Static and Self-Adjusting Parameter Choices for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( , 2017, Algorithmica.

[19]  Yuri Malitsky,et al.  Algorithm Portfolios Based on Cost-Sensitive Hierarchical Clustering , 2013, IJCAI.

[20]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..