Multi-party quantum private comparison protocol with $$n$$n-level entangled states

In this paper, two multi-party quantum private comparison (MQPC) protocols are proposed in distributed mode and traveling mode, respectively. Compared with the first MQPC protocol, which pays attention to compare between arbitrary two participants, our protocols focus on the comparison of equality for $$n$$n participants with a more reasonable assumption of the third party. Through executing our protocols once, it is easy to get if $$n$$n participants’ secrets are same or not. In addition, our protocols are proved to be secure against the attacks from both outside attackers and dishonest participants.

[1]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[2]  Wei-Wei Zhang,et al.  Revisiting “The Loophole of the Improved Secure Quantum Sealed-Bid Auction with Post-Confirmation and Solution” , 2014 .

[3]  Fei Gao,et al.  Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping” , 2007 .

[4]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[5]  M. Hillery Quantum voting and privacy protection: first steps , 2006 .

[6]  宋婷婷,et al.  Participant attack on quantum secret sharing based on entanglement swapping , 2009 .

[7]  Christian Kurtsiefer,et al.  Experimental demonstration of a quantum protocol for byzantine agreement and liar detection. , 2007, Physical review letters.

[8]  Ivan Damgård,et al.  Secure identification and QKD in the bounded-quantum-storage model , 2007, Theor. Comput. Sci..

[9]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[10]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[11]  Yixian Yang,et al.  An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement , 2010 .

[12]  Valerio Scarani,et al.  Security proof for quantum key distribution using qudit systems , 2010, 1003.5464.

[13]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[14]  Chao-Hua Yu,et al.  Quantum private comparison with d-level single-particle states , 2013 .

[15]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[16]  Qiaoyan Wen,et al.  An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement , 2009 .

[17]  Wei-Wei Zhang,et al.  Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party , 2013, Quantum Inf. Process..

[18]  Fei Gao,et al.  Efficient quantum private comparison employing single photons and collective detection , 2013, Quantum Inf. Process..

[19]  Costantino De Angelis,et al.  Light propagation in nonuniform plasmonic subwavelength waveguide arrays , 2010 .

[20]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[21]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[22]  V. Buzek,et al.  Toward protocols for quantum-ensured privacy and secure voting , 2011, 1108.5090.

[23]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[24]  D. Kaszlikowski,et al.  Security of quantum key distributions with entangled qudits (11 pages) , 2003, quant-ph/0302078.

[25]  Tzonelih Hwang,et al.  New quantum private comparison protocol using EPR pairs , 2011, Quantum Information Processing.

[26]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[27]  Mosayeb Naseri,et al.  Secure quantum sealed-bid auction , 2009 .

[28]  Vahid Karimipour,et al.  Quantum key distribution for d -level systems with generalized Bell states , 2002 .

[29]  Qing-yu Cai,et al.  Improving the capacity of the Boström-Felbinger protocol , 2003, quant-ph/0311168.

[30]  Haiming Long,et al.  The loophole of the improved secure quantum sealed-bid auction with post-confirmation and solution , 2013, Quantum Inf. Process..

[31]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[32]  Wei-Wei Zhang,et al.  A quantum protocol for millionaire problem with Bell states , 2013, Quantum Inf. Process..

[33]  Wen Qiao-Yan,et al.  Secure multiparty quantum summation , 2007 .

[34]  Hua Zhang,et al.  Comment on quantum private comparison protocols with a semi-honest third party , 2012, Quantum Information Processing.

[35]  Bin Liu,et al.  Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels , 2013 .

[36]  Qiao-Yan Wen,et al.  Comment on "experimental demonstration of a quantum protocol for Byzantine agreement and liar detection". , 2008, Physical review letters.

[37]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[38]  Chia-Wei Tsai,et al.  Multi-user private comparison protocol using GHZ class states , 2013, Quantum Inf. Process..

[39]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[40]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[41]  Jacques Traoré,et al.  A fair and efficient solution to the socialist millionaires' problem , 2001, Discret. Appl. Math..

[42]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[43]  Fei Gao,et al.  A simple participant attack on the brádler-dušek protocol , 2007, Quantum Inf. Comput..

[44]  Fei Gao,et al.  Quantum protocol for millionaire problem , 2011 .