Automatic computation of Stokes matrices

We describe a general procedure for computing Stokes matrices for solutions of linear differential equations with polynomial coefficients. The algorithms developed make an automation of the calculations possible, for a wide class of equations. We apply our techniques to some classical holonomic functions and also for some new special functions that are interesting in their own right: Ecalle’s accelerating functions.

[1]  Jean Della Dora,et al.  An Algorithm to Obtain Formal Solutions of a Linear Homogeneous Differential Equation at an Irregular Singular Point , 1982, EUROCAM.

[2]  J. I. Ramos,et al.  Computer Algebra and Differential Equations : E. Tournier, editor Academic Press, New York, 1991, £35 , 1993 .

[3]  Joris van der Hoeven,et al.  Efficient accelero-summation of holonomic functions , 2007, J. Symb. Comput..

[4]  A. Duval,et al.  Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées. , 1989 .

[5]  Yves André,et al.  Séries Gevrey de type arithmétique, I. Théorèmes de pureté et de dualité , 2000 .

[6]  Jean Martinet,et al.  Elementary acceleration and multisummability. I , 1990 .

[7]  Algorithms for the splitting of formal series ; applications to alien differential calculus , 2005 .

[8]  J. Thomann,et al.  An algorithm of multisummation of formal power series, solutions of linear ODE equations , 1996 .

[9]  D. Chudnovsky,et al.  Padé approximations to solutions of linear differential equations and applications to diophantine analysis , 1984 .

[10]  Frédéric Fauvet,et al.  Formal and numerical computations with resurgent functions , 2005, Numerical Algorithms.

[11]  B. Braaksma,et al.  Multisummability and Stokes multipliers of linear meromorphic differential equations , 1991 .

[12]  Claude Brezinski,et al.  Pade-Type Approximation and General Orthogonal Polynomials , 1981, The Mathematical Gazette.

[13]  M. Loday-Richaud Stokes phenomenon, multisummability and differential Galois groups , 1994 .

[14]  M. Loday-Richaud Rank reduction, normal forms and stokes matrices , 2001 .

[15]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..

[16]  David Sauzin,et al.  Resurgent functions and splitting problems(New Trends and Applications of Complex Asymptotic Analysis : around dynamical systems, summability, continued fractions) , 2006, 0706.0137.

[17]  Jean Thomann,et al.  Resommation des series formelles , 1990 .

[18]  F. Fauvet,et al.  Remarques algorithmiques liées au rang d’un opérateur différentiel linéaire , 2003 .

[20]  F. Richard-Jung Representations graphiques de solutions d'equations differentielles dans le champ complexe , 1988 .