Functional a posteriori error estimates for boundary element methods

Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.

[1]  Sebastian Bauer,et al.  The Maxwell Compactness Property in Bounded Weak Lipschitz Domains with Mixed Boundary Conditions , 2015, SIAM J. Math. Anal..

[2]  Ernst P. Stephan,et al.  Two-level methods for the single layer potential in ℝ3 , 1998, Computing.

[3]  W. Hackbusch,et al.  Hierarchical Matrices: Algorithms and Analysis , 2015 .

[4]  Joachim Gwinner,et al.  Advanced Boundary Element Methods , 2018 .

[5]  Michael Karkulik,et al.  Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation , 2014 .

[6]  B Faermann Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case , 2000 .

[7]  Carsten Carstensen,et al.  Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind , 2001 .

[8]  Norbert Heuer,et al.  Adaptive Boundary Element Methods , 2014 .

[9]  Birgit Faermann,et al.  Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.

[10]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[11]  M. A. Jaswon Boundary Integral Equations , 1984 .

[12]  Reinhold Schneider,et al.  Convergence of boundary element collocation methods for Dirichlet and Neumann screen problems in R3 , 1993 .

[13]  R. Hiptmair,et al.  Boundary Element Methods , 2021, Oberwolfach Reports.

[14]  Stefan A. Funken,et al.  Energy norm based a posteriori error estimation for boundary element methods in two dimensions , 2009 .

[15]  C. Bahriawati,et al.  Three Matlab Implementations of the Lowest-order Raviart-Thomas Mfem with a Posteriori Error Control , 2005 .

[16]  Michael Karkulik,et al.  HILBERT — a MATLAB implementation of adaptive 2D-BEM , 2014, Numerical Algorithms.

[17]  Reinhold Schneider,et al.  Error analysis of a boundary element collocation method for a screen problem in , 1992 .

[18]  Joachim Gwinner,et al.  Advanced Boundary Element Methods: Treatment of Boundary Value, Transmission and Contact Problems , 2018 .

[19]  Carsten Carstensen,et al.  Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .

[20]  Dirk Pauly,et al.  Solution Theory, Variational Formulations, and Functional a Posteriori Error Estimates for General First Order Systems with Applications to Electro-Magneto-Statics and More , 2016, Numerical Functional Analysis and Optimization.

[21]  Michael Feischl,et al.  Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data☆ , 2014, J. Comput. Appl. Math..

[22]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[23]  Wolfgang L. Wendland,et al.  Boundary integral equations , 2008 .

[24]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[25]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[26]  Michael Karkulik,et al.  On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H1-Stability of L2-Projection , 2013 .

[27]  S. Prössdorf,et al.  Boundary element collocation methods using splines with multiple knots , 1996 .

[28]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[29]  Sergey I. Repin,et al.  A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..

[30]  Dirk Pauly,et al.  An Elementary Method of Deriving A Posteriori Error Equalities and Estimates for Linear Partial Differential Equations , 2019, Comput. Methods Appl. Math..

[31]  Dirk Praetorius,et al.  Simple a posteriori error estimators for the h-version of the boundary element method , 2008, Computing.

[32]  V. Thomée,et al.  The Stability in- L and W^ of the L2-Projection onto Finite Element Function Spaces , 2010 .

[33]  Norbert Heuer,et al.  An adaptive boundary element method for the exterior Stokes problem in three dimensions , 2006 .

[34]  Kunibert G. Siebert,et al.  Optimal grading of the newest vertex bisection and H1-stability of the L2-projection , 2016 .

[35]  Andreas Veeser,et al.  LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS , 2006 .

[36]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[37]  R. Leis,et al.  Randwertaufgaben in der verallgemeinerten Potentialtheorie , 1981 .

[38]  Carsten Carstensen,et al.  An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..

[39]  Dirk Pauly,et al.  Functional A Posteriori Error Control for Conforming Mixed Approximations of Coercive Problems with Lower Order Terms , 2016, Comput. Methods Appl. Math..

[40]  Stefan A. Funken,et al.  Efficient implementation of adaptive P1-FEM in Matlab , 2011, Comput. Methods Appl. Math..

[41]  Michael Karkulik,et al.  Energy norm based error estimators for adaptive BEM for hypersingular integral equations , 2015 .

[42]  Sergey Repin,et al.  Functional a posteriori error estimates for elliptic problems in exterior domains , 2009, 1105.4101.

[43]  Michael Feischl,et al.  Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd , 2013 .

[44]  Rainer Picard,et al.  On the boundary value problems of electro- and magnetostatics , 1982, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[45]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[46]  Carsten Carstensen,et al.  A posteriori error estimates for boundary element methods , 1995 .

[47]  D. Pauly,et al.  Conforming and non-conforming functional a posteriori error estimates for elliptic boundary value problems in exterior domains: theory and numerical tests , 2013, 1307.4709.

[48]  Michael Feischl,et al.  Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data , 2011 .

[49]  Norbert Heuer,et al.  hp-adaptive Two-Level Methods for Boundary Integral Equations on Curves , 2001, Computing.