Element-Wise Alternating Least Squares Algorithm for Nonnegative Matrix Factorization on One-Hot Encoded Data

[1]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[2]  Takumi Kimura,et al.  Gauss-Seidel HALS Algorithm for Nonnegative Matrix Factorization with Sparseness and Smoothness Constraints , 2017, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[3]  Dennis M. Wilkinson,et al.  Large-Scale Parallel Collaborative Filtering for the Netflix Prize , 2008, AAIM.

[4]  Yoon Ho Cho,et al.  Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations , 2010, Inf. Sci..

[5]  Norikazu Takahashi,et al.  Global convergence of modified multiplicative updates for nonnegative matrix factorization , 2013, Computational Optimization and Applications.

[6]  Norikazu Takahashi,et al.  A unified global convergence analysis of multiplicative update rules for nonnegative matrix factorization , 2018, Comput. Optim. Appl..

[7]  Tat-Seng Chua,et al.  Fast Matrix Factorization for Online Recommendation with Implicit Feedback , 2016, SIGIR.

[8]  Balázs Kégl,et al.  Similarity encoding for learning with dirty categorical variables , 2018, Machine Learning.

[9]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[10]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[11]  Juan Manuel Cueva Lovelle,et al.  Implicit feedback techniques on recommender systems applied to electronic books , 2012, Comput. Hum. Behav..

[12]  Fernando Ortega,et al.  A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model , 2016, Knowl. Based Syst..