Low Regularity Exponential-Type Integrators for Semilinear Schrödinger Equations
暂无分享,去创建一个
[1] Mechthild Thalhammer,et al. Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations , 2012, SIAM J. Numer. Anal..
[2] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[3] Elena Celledoni,et al. Symmetric Exponential Integrators with an Application to the Cubic Schrödinger Equation , 2008, Found. Comput. Math..
[4] Katharina Schratz,et al. An exponential-type integrator for the KdV equation , 2016, Numerische Mathematik.
[5] Luis Vega,et al. Quadratic forms for the 1-D semilinear Schrödinger equation , 1996 .
[6] Y. Tsutsumi. L$^2$-Solutions for Nonlinear Schrodinger Equations and Nonlinear Groups , 1985 .
[7] H. Holden,et al. Splitting methods for partial differential equations with rough solutions : analysis and MATLAB programs , 2010 .
[8] Lloyd N. Trefethen,et al. Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..
[9] Christophe Besse,et al. Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[10] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[11] Kenji Nakanishi,et al. Counterexamples to Bilinear Estimates Related with the KDV Equation and the Nonlinear Schrödinger Equation , 2001 .
[12] T. Tao,et al. REMARK ON THE PAPER “SHARP WELL-POSEDNESS AND ILL-POSEDNESS RESULTS FOR A QUADRATIC NON-LINEAR SCHRÖDINGER EQUATION” BY I. BEJENARU AND T. TAO , 2010 .
[13] Nobu Kishimoto,et al. Low-regularity bilinear estimates for a quadratic nonlinear Schrödinger equation , 2009 .
[14] Roland Schnaubelt,et al. Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation , 2016 .
[15] Guillaume Dujardin,et al. Exponential Runge--Kutta methods for the Schrödinger equation , 2009 .
[16] Nader Masmoudi,et al. Global Solutions for 3D Quadratic Schrödinger Equations , 2008, 1001.5158.
[17] E. Hairer,et al. Solving Ordinary ,Differential Equations I, Nonstiff problems/E. Hairer, S. P. Norsett, G. Wanner, Second Revised Edition with 135 Figures, Vol.: 1 , 2000 .
[18] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[19] B. Cano,et al. Exponential time integration of solitary waves of cubic Schrödinger equation , 2015 .
[20] Thierry Cazenave,et al. The Cauchy problem for the critical nonlinear Schro¨dinger equation in H s , 1990 .
[21] T. Tao. Nonlinear dispersive equations : local and global analysis , 2006 .
[22] Terence Tao. Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations , 2000 .
[23] J. D. Lawson. Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .
[24] Liviu I. Ignat,et al. A splitting method for the nonlinear Schrödinger equation , 2011 .
[25] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[26] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[27] P. Geramain,et al. GLOBAL SOLUTIONS FOR 3D QUADRATIC SCHRÖDINGER EQUATIONS , 2008 .
[28] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[29] J. Bourgain,et al. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .
[30] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[31] Thomas Chen,et al. The quintic NLS as the mean field limit of a boson gas with three-body interactions , 2008, 0812.2740.
[32] Erwan Faou,et al. Geometric Numerical Integration and Schrodinger Equations , 2012 .
[33] David Cohen,et al. One-stage exponential integrators for nonlinear Schrödinger equations over long times , 2012 .
[34] L. Gauckler,et al. Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .
[35] Luis Vega,et al. On the ill-posedness of some canonical dispersive equations , 2001 .
[36] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .