Low Regularity Exponential-Type Integrators for Semilinear Schrödinger Equations

We introduce low regularity exponential-type integrators for nonlinear Schrödinger equations for which first-order convergence only requires the boundedness of one additional derivative of the solution. More precisely, we will prove first-order convergence in $$H^r$$Hr for solutions in $$H^{r+1}$$Hr+1 (with $$r > d/2$$r>d/2) of the derived schemes. This allows us lower regularity assumptions on the data than for instance required for classical splitting or exponential integration schemes. For one-dimensional quadratic Schrödinger equations, we can even prove first-order convergence without any loss of regularity. Numerical experiments underline the favorable error behavior of the newly introduced exponential-type integrators for low regularity solutions compared to classical splitting and exponential integration schemes.

[1]  Mechthild Thalhammer,et al.  Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations , 2012, SIAM J. Numer. Anal..

[2]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[3]  Elena Celledoni,et al.  Symmetric Exponential Integrators with an Application to the Cubic Schrödinger Equation , 2008, Found. Comput. Math..

[4]  Katharina Schratz,et al.  An exponential-type integrator for the KdV equation , 2016, Numerische Mathematik.

[5]  Luis Vega,et al.  Quadratic forms for the 1-D semilinear Schrödinger equation , 1996 .

[6]  Y. Tsutsumi L$^2$-Solutions for Nonlinear Schrodinger Equations and Nonlinear Groups , 1985 .

[7]  H. Holden,et al.  Splitting methods for partial differential equations with rough solutions : analysis and MATLAB programs , 2010 .

[8]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[9]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[10]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[11]  Kenji Nakanishi,et al.  Counterexamples to Bilinear Estimates Related with the KDV Equation and the Nonlinear Schrödinger Equation , 2001 .

[12]  T. Tao,et al.  REMARK ON THE PAPER “SHARP WELL-POSEDNESS AND ILL-POSEDNESS RESULTS FOR A QUADRATIC NON-LINEAR SCHRÖDINGER EQUATION” BY I. BEJENARU AND T. TAO , 2010 .

[13]  Nobu Kishimoto,et al.  Low-regularity bilinear estimates for a quadratic nonlinear Schrödinger equation , 2009 .

[14]  Roland Schnaubelt,et al.  Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation , 2016 .

[15]  Guillaume Dujardin,et al.  Exponential Runge--Kutta methods for the Schrödinger equation , 2009 .

[16]  Nader Masmoudi,et al.  Global Solutions for 3D Quadratic Schrödinger Equations , 2008, 1001.5158.

[17]  E. Hairer,et al.  Solving Ordinary ,Differential Equations I, Nonstiff problems/E. Hairer, S. P. Norsett, G. Wanner, Second Revised Edition with 135 Figures, Vol.: 1 , 2000 .

[18]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[19]  B. Cano,et al.  Exponential time integration of solitary waves of cubic Schrödinger equation , 2015 .

[20]  Thierry Cazenave,et al.  The Cauchy problem for the critical nonlinear Schro¨dinger equation in H s , 1990 .

[21]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[22]  Terence Tao Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations , 2000 .

[23]  J. D. Lawson Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants , 1967 .

[24]  Liviu I. Ignat,et al.  A splitting method for the nonlinear Schrödinger equation , 2011 .

[25]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[26]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[27]  P. Geramain,et al.  GLOBAL SOLUTIONS FOR 3D QUADRATIC SCHRÖDINGER EQUATIONS , 2008 .

[28]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[29]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[30]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[31]  Thomas Chen,et al.  The quintic NLS as the mean field limit of a boson gas with three-body interactions , 2008, 0812.2740.

[32]  Erwan Faou,et al.  Geometric Numerical Integration and Schrodinger Equations , 2012 .

[33]  David Cohen,et al.  One-stage exponential integrators for nonlinear Schrödinger equations over long times , 2012 .

[34]  L. Gauckler,et al.  Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .

[35]  Luis Vega,et al.  On the ill-posedness of some canonical dispersive equations , 2001 .

[36]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .