SECOND FUNDAMENTAL MEASURE OF GEOMETRIC SETS AND LOCAL APPROXIMATION OF CURVATURES

Using the theory of normal cycles, we associate with each geometric subset of a Riemannian manifold a —tensor-valued— curvature measure, which we call its second fundamental measure. This measure provides a finer description of the geometry of singular sets than the standard curvature measures. Moreover, we deal with approximation of curvature measures. We get a local quantitative estimate of the difference between curvature measures of two geometric subsets, when one of them is a smooth hypersurface.

[1]  Andreas Bernig,et al.  Curvature tensors of singular spaces , 2006 .

[2]  Jean-Marie Morvan,et al.  Approximation of the Normal Vector Field and the Area of a Smooth Surface , 2004, Discret. Comput. Geom..

[3]  Submanifold averaging in riemannian and symplectic geometry , 2002, math/0208203.

[4]  Stefan Funke,et al.  Smooth-surface reconstruction in near-linear time , 2002, SODA '02.

[5]  Z. Muzsnay,et al.  Variational Principles for Second Order Differential Equations: Application of the Spencer Theory to Characterize Variational Sprays , 2000 .

[6]  Sunghee Choi,et al.  A simple algorithm for homeomorphic surface reconstruction , 2000, SCG '00.

[7]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[8]  J. Fu,et al.  Curvature Measures of Subanalytic Sets , 1994 .

[9]  J. Fu,et al.  Convergence of curvatures in secant approximations , 1993 .

[10]  Joseph H. G. Fu Curvature measures and generalized Morse theory , 1989 .

[11]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .

[12]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[13]  Hermann Karcher,et al.  A general comparison theorem with applications to volume estimates for submanifolds , 1978 .

[14]  L. Santaló Integral geometry and geometric probability , 1976 .

[15]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[16]  Bang-Yen Chen,et al.  Geometry of submanifolds , 1973 .

[17]  T. Banchoff CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .

[18]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[19]  H. Weyl On the Volume of Tubes , 1939 .