Smoldyn: particle‐based simulation with rule‐based modeling, improved molecular interaction and a library interface

Motivation: Smoldyn is a spatial and stochastic biochemical simulator. It treats each molecule of interest as an individual particle in continuous space, simulating molecular diffusion, molecule‐membrane interactions and chemical reactions, all with good accuracy. This article presents several new features. Results: Smoldyn now supports two types of rule‐based modeling. These are a wildcard method, which is very convenient, and the BioNetGen package with extensions for spatial simulation, which is better for complicated models. Smoldyn also includes new algorithms for simulating the diffusion of surface‐bound molecules and molecules with excluded volume. Both are exact in the limit of short time steps and reasonably good with longer steps. In addition, Smoldyn supports single‐molecule tracking simulations. Finally, the Smoldyn source code can be accessed through a C/C ++ language library interface. Availability and Implementation: Smoldyn software, documentation, code, and examples are at http://www.smoldyn.org. Contact: steven.s.andrews@gmail.com

[1]  Leslie M Loew,et al.  Spatial modeling of cell signaling networks. , 2012, Methods in cell biology.

[2]  Josef Spacek,et al.  Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil , 2013, The Journal of comparative neurology.

[3]  Nicolas Le Novère,et al.  Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes , 2010, BMC Systems Biology.

[4]  S. Sinha,et al.  A “Gaussian” for diffusion on the sphere , 2012, 1303.1278.

[5]  A. Verkman,et al.  Crowding effects on diffusion in solutions and cells. , 2008, Annual review of biophysics.

[6]  Erik De Schutter,et al.  Monte Carlo Methods for Simulating Realistic Synaptic Microphysiology Using MCell , 2000 .

[7]  K Burrage,et al.  Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology. , 2012, IET systems biology.

[8]  R. Nossal,et al.  SANS studies of interacting hemoglobin in intact erythrocytes. , 1988, Biophysical journal.

[9]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[10]  Masaru Tomita,et al.  A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation , 2009, Systems and Synthetic Biology.

[11]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[12]  Roger Brent,et al.  Automatic generation of cellular reaction networks with Moleculizer 1.0 , 2005, Nature Biotechnology.

[13]  A. Minton,et al.  Tracer diffusion of globular proteins in concentrated protein solutions. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Spatz,et al.  Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species , 2015, Nature Communications.

[15]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[16]  M. Saxton,et al.  Lateral diffusion in an archipelago. The effect of mobile obstacles. , 1987, Biophysical journal.

[17]  Leslie M Loew,et al.  SpringSaLaD: A Spatial, Particle-Based Biochemical Simulation Platform with Excluded Volume. , 2016, Biophysical journal.

[18]  Adam P. Arkin,et al.  Stochastic Models of Biological Processes , 2009, Encyclopedia of Complexity and Systems Science.

[19]  Nasir M. Rajpoot,et al.  Spatiotemporal maps of CaMKII in dendritic spines , 2012, Journal of Computational Neuroscience.

[20]  S. Manley,et al.  Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging , 2012, Proceedings of the National Academy of Sciences.

[21]  S. Andrews Accurate particle-based simulation of adsorption, desorption and partial transmission , 2009, Physical biology.

[22]  Thomas Hinze,et al.  Rule-based spatial modeling with diffusing, geometrically constrained molecules , 2010, BMC Bioinformatics.

[23]  T. Jue Fundamental concepts in biophysics , 2009 .

[24]  S. Sandler,et al.  A real function representation for the structure of the hard-sphere fluid , 1994 .

[25]  Margaret E. Johnson,et al.  Free-Propagator Reweighting Integrator for Single-Particle Dynamics in Reaction-Diffusion Models of Heterogeneous Protein-Protein Interaction Systems , 2014, Physical review. X.

[26]  E. Thiele,et al.  Equation of State for Hard Spheres , 1963 .

[27]  T. Bartol,et al.  Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Roger Brent,et al.  Detailed Simulations of Cell Biology with Smoldyn 2.1 , 2010, PLoS Comput. Biol..

[29]  Robert A. Meyers,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[30]  Erik De Schutter,et al.  Computational neuroscience : realistic modeling for experimentalists , 2000 .

[31]  Terrence J. Sejnowski,et al.  Multi-state Modeling of Biomolecules , 2014, PLoS Comput. Biol..

[32]  William S. Hlavacek,et al.  BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains , 2004, Bioinform..

[33]  James R Faeder,et al.  Rule‐based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems , 2014, Wiley interdisciplinary reviews. Systems biology and medicine.

[34]  Radek Erban,et al.  Multiscale reaction-diffusion simulations with Smoldyn , 2015, Bioinform..

[35]  P. R. ten Wolde,et al.  Simulating biochemical networks at the particle level and in time and space: Green's function reaction dynamics. , 2005, Physical review letters.

[36]  Raamesh Deshpande,et al.  A general biological simulator: the multiscale object oriented simulation environment, MOOSE , 2008, BMC Neuroscience.

[37]  Jin Yang,et al.  'On-the-fly' or 'generate-first' modeling? , 2005, Nature Biotechnology.

[38]  S. Andrews,et al.  An Integrated Model of Transcription Factor Diffusion Shows the Importance of Intersegmental Transfer and Quaternary Protein Structure for Target Site Finding , 2014, PloS one.

[39]  K. Braeckmans,et al.  Single particle tracking , 2010 .

[40]  Frank Noé,et al.  Simulation tools for particle-based reaction-diffusion dynamics in continuous space , 2014, BMC biophysics.

[41]  H. Modarress,et al.  Equation of state for hard-spheres , 2003 .

[42]  C. Lumsden,et al.  Stochastic Simulation of Coupled Reaction-Diffusion Processes , 1996 .

[43]  Leslie M Loew,et al.  Molecular machines or pleiomorphic ensembles: signaling complexes revisited , 2009, Journal of biology.

[44]  L M Loew,et al.  A general computational framework for modeling cellular structure and function. , 1997, Biophysical journal.

[45]  D. Bray,et al.  Computer-based analysis of the binding steps in protein complex formation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Amr Wassal,et al.  Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: A primer , 2015, Biosyst..

[47]  M. Groudine,et al.  Nucleolar tethering mediates pairing between the IgH and Myc loci , 2014, Nucleus.

[48]  Masaru Tomita,et al.  Space in systems biology of signaling pathways – towards intracellular molecular crowding in silico , 2005, FEBS letters.

[49]  Arne T. Bittig,et al.  Simulating macromolecular crowding with particle and lattice-based methods ( Team 3 ) , 2015 .

[50]  P. R. ten Wolde,et al.  Spatio-temporal correlations can drastically change the response of a MAPK pathway , 2009, Proceedings of the National Academy of Sciences.

[51]  James R Faeder,et al.  Efficient modeling, simulation and coarse-graining of biological complexity with NFsim , 2011, Nature Methods.

[52]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[53]  Steven S. Andrews,et al.  Rule-based modeling using wildcards , 2017, bioRxiv.

[54]  Eder Zavala,et al.  The Long and Viscous Road: Uncovering Nuclear Diffusion Barriers in Closed Mitosis , 2014, PLoS Comput. Biol..

[55]  E. Purcell Life at Low Reynolds Number , 2008 .

[56]  Steven S Andrews,et al.  Spatial and stochastic cellular modeling with the Smoldyn simulator. , 2012, Methods in molecular biology.

[57]  Andreas Hellander,et al.  URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries , 2012, BMC Systems Biology.

[58]  T. Sejnowski,et al.  Computational reconstitution of spine calcium transients from individual proteins , 2015, Front. Synaptic Neurosci..

[59]  N. Agmon,et al.  Brownian dynamics simulations of reversible reactions in one dimension , 1993 .

[60]  R. J. Speedy Diffusion in the hard sphere fluid , 1987 .

[61]  Alexandra Jilkine,et al.  A Density-Dependent Switch Drives Stochastic Clustering and Polarization of Signaling Molecules , 2011, PLoS Comput. Biol..

[62]  Frank Noé,et al.  ReaDDy - A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments , 2013, PloS one.

[63]  Dennis Bray,et al.  Size and composition of membrane protein clusters predicted by Monte Carlo analysis , 2004, European Biophysics Journal.

[64]  K. Burdzy,et al.  Diffusion on curved, periodic surfaces. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.