Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection
暂无分享,去创建一个
F. Moshary | S. Ahmed | B. Gross | A. Gilerson | A. Comeron | R. R. Agishev | V. A. Vlasov
[1] Paul C. Simon,et al. Instrument Development for Atmospheric Research and Monitoring , 1997 .
[2] Paul C. Simon,et al. Instrument development for atmospheric research and monitoring : Lidar profiling, DOAS and tunable diode laser spectroscopy , 1997 .
[3] Maria R. Perrone,et al. Lidar measurements of African dust outbreaks , 2003, SPIE Remote Sensing.
[4] R. Measures. Laser remote sensing : fundamentals and applications , 1984 .
[5] Adolfo Comeron,et al. Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications. , 2002, Applied optics.
[6] Gregory R. Osche. Optical Detection Theory for Laser Applications , 2002 .
[7] M. Sigrist. Air monitoring by spectroscopic techniques , 1994 .
[8] Ellsworth J. Welton,et al. Global monitoring of clouds and aerosols using a network of micropulse lidar systems , 2001, SPIE Asia-Pacific Remote Sensing.
[9] M. Shepard,et al. Coherent and incoherent components in near-nadir radar scattering: Applications to radar sounding of Mars , 2003 .
[10] Rui Vilar,et al. Estimation of required parameters for detection of small smoke plumes by lidar at 1.54 μm , 2000 .
[11] E. David Hinkley,et al. Laser monitoring of the atmosphere , 1976 .
[12] Peter J. Winzer. Mitigation of the speckle effect in incoherent lidar systems using telescope arrays , 1998, Remote Sensing.