Surface Chemistry and Electrochemistry of Supported Zerovalent Iron Nanoparticles in the Remediation of Aqueous Metal Contaminants

The microstructure, physical characteristics, corrosion behavior, and reactivity of zerovalent iron nanoparticles synthesized on a support (primarily a nonporous, hydrophobic polymer resin) were studied. The remediation of groundwater by zerovalent iron in in situ permeable reactive barriers relies on the redox reaction between metallic iron and a reducible contaminant. Decreasing the size of the iron particles and dispersing them on a support increases the specific surface area of the iron, as well as the ratio of surface to bulk iron atoms, and should thereby increase both the reaction rate and the fraction of iron atoms available for the reaction. Borohydride reduction of aqueous ferrous sulfate gives supported iron nanoparticles, 10−30 nm in diameter, which consist of 85% zerovalent iron by weight. These materials (“ferragels”) are stable in air and have corrosion behavior comparable to iron filings. Interestingly, the presence or absence of a support, as well as the boron remaining from the borohydri...