Learning smooth objects by probing

We consider the problem of discovering a smooth unknown surface S bounding an object O in R3. The discovery process consists of moving a point probing device in the free space around O so that it repeatedly comes in contact with S. We propose a probing strategy for generating a sequence of surface samples on S from which a triangulated surface can be generated which approximates S within any desired accuracy. We bound the number of probes and the number of elementary moves of the probing device. Our solution is an extension of previous work on Delaunay refinement techniques for surface meshing. The approximating surface we generate enjoys the many nice properties of the meshes obtained by those techniques, e.g. exact topological type, normal approximation, etc.

[1]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[2]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[3]  Günter Rote,et al.  The convergence rate of the sandwich algorithm for approximating convex functions , 1992, Computing.

[4]  Sunghee Choi,et al.  A simple algorithm for homeomorphic surface reconstruction , 2000, SCG '00.

[5]  Leonidas J. Guibas,et al.  Learning Surfaces by Probing , 2004 .

[6]  P. Gruber Approximation of convex bodies , 1983 .

[7]  Richard Cole,et al.  Shape from Probing , 1987, J. Algorithms.

[8]  Steven Skiena,et al.  Geometric Reconstruction Problems , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[9]  Mariette Yvinec,et al.  Non Convex Contour Reconstruction , 1990, J. Symb. Comput..

[10]  Alfred M. Bruckstein,et al.  Blind approximation of planar convex sets , 1994, IEEE Trans. Robotics Autom..

[11]  T. O’Neil Geometric Measure Theory , 2002 .

[12]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[13]  Mariette Yvinec,et al.  Probing a scene of non convex polyhedra , 1989, SCG '89.

[14]  H. Woxniakowski Information-Based Complexity , 1988 .

[15]  David P. Dobkin,et al.  Probing convex polytopes , 1986, STOC '86.

[16]  I. Holopainen Riemannian Geometry , 1927, Nature.

[17]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2004, SCG '04.

[18]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[19]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[20]  T. J. Richardson,et al.  Approximation of Planar Convex Sets from Hyperplane Probes , 1997, Discret. Comput. Geom..

[21]  Mariette Yvinec,et al.  Probing a scene of nonconvex polyhedra , 2005, Algorithmica.

[22]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[23]  Jean-Daniel Boissonnat,et al.  Complexity of the delaunay triangulation of points on surfaces the smooth case , 2003, SCG '03.