Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many orders of magnitude. Data values also have greatly varying magnitudes. Standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME models have 70,000 constraints and variables and will grow larger). We have developed a quadruple-precision version of our linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in systems biology and other applications involving multiscale data.

[1]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[2]  J. A. Tomlin,et al.  On scaling linear programming problems , 1975 .

[3]  Michael A. Saunders,et al.  Large-scale linearly constrained optimization , 1978, Math. Program..

[4]  Michael A. Saunders,et al.  A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints , 1982 .

[5]  Robert Fourer,et al.  Solving staircase linear programs by the simplex method, 1: Inversion , 1982, Math. Program..

[6]  P. Gill,et al.  A practical anti-cycling procedure for linear and nonlinear programming: , 1988 .

[7]  Michael A. Saunders,et al.  A practical anti-cycling procedure for linearly constrained optimization , 1989, Math. Program..

[8]  Donald Goldfarb,et al.  Steepest-edge simplex algorithms for linear programming , 1992, Math. Program..

[9]  Roland Wunderling,et al.  Paralleler und objektorientierter Simplex-Algorithmus , 1996 .

[10]  Kenneth Holmstrom,et al.  The TOMLAB Optimization Environment in Matlab , 1999 .

[11]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[12]  Kurt Mehlhorn,et al.  Certifying and repairing solutions to large LPs how good are LP-solvers? , 2003, SODA '03.

[13]  Thorsten Koch The final NETLIB-LP results , 2004, Oper. Res. Lett..

[14]  K. I. M. McKinnon,et al.  The simplest examples where the simplex method cycles and conditions where expand fails to prevent cycling , 2000, Math. Program..

[15]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[16]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[17]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[18]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[19]  William J. Cook,et al.  Exact solutions to linear programming problems , 2007, Oper. Res. Lett..

[20]  Ronan M. T. Fleming,et al.  Genome-Scale Reconstruction of Escherichia coli's Transcriptional and Translational Machinery: A Knowledge Base, Its Mathematical Formulation, and Its Functional Characterization , 2009, PLoS Comput. Biol..

[21]  Aarash Bordbar,et al.  Functional characterization of alternate optimal solutions of Escherichia coli's transcriptional and translational machinery. , 2010, Biophysical journal.

[22]  Ines Thiele,et al.  Computationally efficient flux variability analysis , 2010, BMC Bioinformatics.

[23]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[24]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[25]  B. Palsson,et al.  A Systems Biology Approach to the Evolution of Codon Use Pattern , 2011 .

[26]  Ronan M. T. Fleming,et al.  Multiscale Modeling of Metabolism and Macromolecular Synthesis in E. coli and Its Application to the Evolution of Codon Usage , 2012, PloS one.

[27]  Joshua A. Lerman,et al.  COBRApy: COnstraints-Based Reconstruction and Analysis for Python , 2013, BMC Systems Biology.

[28]  Michael A. Saunders,et al.  Robust flux balance analysis of multiscale biochemical reaction networks , 2013, BMC Bioinformatics.

[29]  Daniel E. Steffy,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Improving the Accuracy of Linear Programming Solvers with Iterative Refinement Improving the Accuracy of Linear Programming Solvers with Iterative Refinement * , 2022 .

[30]  Jeffrey D. Orth,et al.  In silico method for modelling metabolism and gene product expression at genome scale , 2012, Nature Communications.

[31]  Edward J. O'Brien,et al.  Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction , 2013, Molecular systems biology.

[32]  Bonnie Berger,et al.  An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models , 2014, Nature Communications.

[33]  Roger Fletcher On Wolfe's Method for Resolving Degeneracy in Linearly Constrained Optimization , 2014, SIAM J. Optim..

[34]  M. Saunders,et al.  Solving Multiscale Linear Programs Using the Simplex Method in Quadruple Precision , 2015 .

[35]  Ronan M. T. Fleming,et al.  Do genome-scale models need exact solvers or clearer standards? , 2015, Molecular systems biology.

[36]  Ambros M. Gleixner Exact and Fast Algorithms for Mixed-Integer Nonlinear Programming , 2015 .

[37]  Daniel E. Steffy,et al.  Iterative Refinement for Linear Programming , 2016, INFORMS J. Comput..

[38]  Ronan M. T. Fleming,et al.  Conditions for duality between fluxes and concentrations in biochemical networks. , 2015, Journal of theoretical biology.

[39]  Michael A. Saunders,et al.  solveME: fast and reliable solution of nonlinear ME models , 2016, BMC Bioinformatics.

[40]  Philip Miller,et al.  BiGG Models: A platform for integrating, standardizing and sharing genome-scale models , 2015, Nucleic Acids Res..