The Structure of Nuprl’s Type Theory

After my lectures on this topic were delivered in July 1995 at Markt ob erdorf, my colleagues and I made available much more related material both at the Nuprl home page on the World Wide Web (“the Web”) (www.cs.cornell.edu/Info/NuPrl/nuprl.html) and in publications [22], some soon to appear [11].

[1]  Tony Hoare,et al.  Notes on Data Structuring , 1972 .

[2]  J. Paris,et al.  The Type Theoretic Interpretation of Constructive Set Theory , 1978 .

[3]  Scott D. Stoller,et al.  An Operational Approach to Combining Classical Set Theory and Functional Programming Languages , 1994, TACS.

[4]  P. Mendler Inductive Definition in Type Theory , 1988 .

[5]  Robert L. Constable,et al.  Chapter X - Types in Logic, Mathematics and Programming , 1998 .

[6]  Daniel Leivant,et al.  Logic and Computational Complexity , 1995, Lecture Notes in Computer Science.

[7]  S. Allen A Non-Type-Theoretic Semantics for Type-Theoretic Language , 1987 .

[8]  Ulrich Berger,et al.  Program Extraction from Classical Proofs , 1994, LCC.

[9]  F. Dick A survey of the project Automath , 1980 .

[10]  Andrew Pitts,et al.  Semantics and Logics of Computation: Operationally-Based Theories of Program Equivalence , 1997 .

[11]  Robert L. Constable,et al.  Using Reflection to Explain and Enhance Type Theory , 1995 .

[12]  Stanley S. Wainer The Hierarchy of terminating Recursive Programs over N , 1994, LCC.

[13]  J. Girard,et al.  Proofs and types , 1989 .

[14]  Paul B. Jackson Enhancing the NUPRL Proof Development System and Applying it to Computational Abstract Algebra , 1995 .

[15]  Simon Thompson,et al.  Type theory and functional programming , 1991, International computer science series.

[16]  Peter Aczel,et al.  The Type Theoretic Interpretation of Constructive Set Theory: Inductive Definitions , 1986 .

[17]  Peter E. Lauer,et al.  Functional Programming, Concurrency, Simulation and Automated Reasoning , 1993, Lecture Notes in Computer Science.

[18]  Douglas J. Howe Reasoning About Functional Programs in Nuprl , 1993, Functional Programming, Concurrency, Simulation and Automated Reasoning.

[19]  Douglas J. Howe Equality in lazy computation systems , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[20]  M. Beeson Formalizing constructive mathematics: Why and how? , 1981 .

[21]  Peter Aczel,et al.  An Introduction to Inductive Definitions , 1977 .

[22]  Max B. Forester,et al.  Formalizing Constructive Real Analysis , 1993 .

[23]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[24]  Daniel Leivant,et al.  Intrinsic Theories and Computational Complexity , 1994, LCC.

[25]  Gérard Huet A uniform approach to type theory , 1990 .

[26]  Edsger W. Dijkstra,et al.  Structured programming , 1972, A.P.I.C. Studies in data processing.

[27]  David Gries,et al.  On Structured Programming , 1978 .

[28]  Anton Setzer Proof theoretical strength of Martin-L?f Type Theory with W-type and one universe , 1993 .

[29]  Bengt Nordström,et al.  Programming in Martin-Löf's Type Theory , 1990 .

[30]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[31]  Per Martin-Löf,et al.  Constructive mathematics and computer programming , 1984 .

[32]  T. Coquand,et al.  Metamathematical investigations of a calculus of constructions , 1989 .

[33]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[34]  A. Selman Structure in Complexity Theory , 1986, Lecture Notes in Computer Science.

[35]  S. Feferman A Language and Axioms for Explicit Mathematics , 1975 .

[36]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[37]  Stuart Allen A Non-Type-Theoretic Definition of Martin-Löf's Types , 1987, LICS.

[38]  Piergiorgio Odifreddi,et al.  Logic and computer science , 1990 .

[39]  Douglas J. Howe Semantic Foundations for Embedding HOL in Nuprl , 1996, AMAST.

[40]  P. Dybjer Inductive sets and families in Martin-Lo¨f's type theory and their set-theoretic semantics , 1991 .

[41]  Samuel R. Buss,et al.  The Polynomial Hierarchy and Intuitionistic Bounded Arithmetic , 1986, SCT.