Superpolynomial Lower Bounds for Monotone Span Programs

monotone span programs computing explicit functions. The best previous lower bound was by Beimel, Gál, Paterson [7]; our proof exploits a general combinatorial lower bound criterion from that paper. Our lower bounds are based on an analysis of Paley-type bipartite graphs via Weil's character sum estimates. We prove an lower bound for the size of monotone span programs for the clique problem. Our results give the first superpolynomial lower bounds for linear secret sharing schemes.We demonstrate the surprising power of monotone span programs by exhibiting a function computable in this model in linear size while requiring superpolynomial size monotone circuits and exponential size monotone formulae. We also show that the perfect matching function can be computed by polynomial size (non-monotone) span programs over arbitrary fields.

[1]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[2]  Mauricio Karchmer,et al.  On proving lower bounds for circuit size , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[3]  Anna Gál A characterization of span program size and improved lower bounds for monotone span programs , 2001, computational complexity.

[4]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[5]  Alexander A. Razborov,et al.  On the method of approximations , 1989, STOC '89.

[6]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[7]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, International Symposium on Fundamentals of Computation Theory.

[8]  Noga Alon,et al.  Simple Construction of Almost k-wise Independent Random Variables , 1992, Random Struct. Algorithms.

[9]  W. Schmidt Equations over Finite Fields: An Elementary Approach , 1976 .

[10]  R. Graham,et al.  A Constructive Solution to a Tournament Problem , 1971, Canadian Mathematical Bulletin.

[11]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[12]  W. T. Tutte The Factorization of Linear Graphs , 1947 .

[13]  Eric Allender,et al.  The complexity of matrix rank and feasible systems of linear equations , 1996, STOC '96.

[14]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[15]  Vojtech Rödl,et al.  A combinatorial approach to complexity , 1992, Comb..

[16]  M. Sipser,et al.  Monotone complexity , 1992 .

[17]  Yossi Azar,et al.  Approximating Probability Distributions Using Small Sample Spaces , 1998, Comb..

[18]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[19]  J. Milnor On the Betti numbers of real varieties , 1964 .

[20]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: Preface , 1994 .

[21]  Paul W. Goldberg,et al.  Bounding the Vapnik-Chervonenkis Dimension of Concept Classes Parameterized by Real Numbers , 1993, COLT '93.

[22]  Douglas R. Stinson,et al.  An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..

[23]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[24]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[25]  Peter Frankl,et al.  Complexity classes in communication complexity theory , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[26]  Ran Raz,et al.  Monotone circuits for matching require linear depth , 1990, STOC '90.

[27]  Lajos Rónyai,et al.  Extremal bipartite graphs and superpolynomial lower bounds for monotone span programs , 1996, STOC '96.

[28]  Lajos Rónyai,et al.  Norm-graphs and bipartite turán numbers , 1996, Comb..

[29]  Éva Tardos,et al.  The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..

[30]  Avi Wigderson,et al.  Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.

[31]  Anna Gál A characterization of span program size and improved lower bounds for monotone span programs , 1998, STOC '98.

[32]  L. Csanky,et al.  Fast Parallel Matrix Inversion Algorithms , 1976, SIAM J. Comput..

[33]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[34]  Armin Haken,et al.  Counting bottlenecks to show monotone P/spl ne/NP , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[35]  H. Warren Lower bounds for approximation by nonlinear manifolds , 1968 .

[36]  R. Thom Sur L'Homologie des Varietes Algebriques Réelles , 1965 .

[37]  Leslie G. Valiant,et al.  A complexity theory based on Boolean algebra , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[38]  Eric Allender,et al.  The complexity of matrix rank and feasible systems of linear equations , 1999, computational complexity.

[39]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[40]  Ketan Mulmuley,et al.  A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.