Kummer and gamma laws through independences on trees - Another parallel with the Matsumoto-Yor property
暂无分享,去创建一个
Jacek Wesolowski | Agnieszka Piliszek | J. Wesolowski | A. Piliszek | J. Wesołowski | Agnieszka Piliszek
[1] M. Arashi,et al. Kernel Oriented Generator Distribution , 2014, 1409.1388.
[2] J. Wesołowski. The Matsumoto–Yor independence property for GIG and Gamma laws, revisited , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] Rodrigo Rossetto Pescim,et al. The new class of Kummer beta generalized distributions: theory and applications , 2013 .
[4] P. Vallois,et al. On Kummer’s distribution of type two and a generalized beta distribution , 2016 .
[5] W. J. Hall,et al. ON CHARACTERIZATION OF THE GAMMA DISTRIBUTION. , 1968 .
[6] F. Dyson. The Dynamics of a Disordered Linear Chain , 1953 .
[7] N. L. Johnson,et al. Continuous Univariate Distributions.Vol. 1@@@Continuous Univariate Distributions.Vol. 2 , 1995 .
[8] Ronald W. Butler. Generalized Inverse Gaussian Distributions and their Wishart Connections , 1998 .
[9] P. Vallois,et al. Independence properties of the Matsumoto-Yor type , 2012, 1203.0381.
[10] J. Wesolowski,et al. On the Matsumoto–Yor type regression characterization of the gamma and Kummer distributions , 2015 .
[11] R. Bellman. Dynamics of a Disordered Linear Chain , 1956 .
[12] M. Yor,et al. Interpretation via Brownian motion of some independence properties between GIG and gamma variables , 2003 .
[13] Bartosz Kołodziejek. The Matsumoto–Yor Property and Its Converse on Symmetric Cones , 2014, 1409.5256.
[14] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[15] M. Yor,et al. An Analogue of Pitman’s 2M — X Theorem for Exponential Wiener Functionals Part II: The Role of the Generalized Inverse Gaussian Laws , 2001, Nagoya Mathematical Journal.
[16] H. Matsumoto,et al. Tree structured independence for exponential Brownian functionals , 2009 .
[17] David Stirzaker,et al. Stochastic Processes and Models , 2005 .
[18] H. Massam,et al. The Matsumoto--Yor property and the structure of the Wishart distribution , 2006 .
[19] David Heckerman,et al. Parameter Priors for Directed Acyclic Graphical Models and the Characteriration of Several Probability Distributions , 1999, UAI.
[20] H. Massam,et al. The Matsumoto-Yor property on trees , 2004 .
[21] J. Wesolowski,et al. On a functional equation related to the Matsumoto—Yor property , 2002 .
[22] Hitting times of Brownian motion and the Matsumoto-Yor property on trees , 2007 .
[23] A. Koudou. A Matsumoto–Yor property for Kummer and Wishart random matrices , 2012 .
[24] G. Letac,et al. An independence property for the product of GIG and gamma laws , 2000 .
[25] Konstancja Bobecka. The Matsumoto-Yor property on trees for matrix variates of different dimensions , 2015, J. Multivar. Anal..
[26] M. J. Bayarri,et al. A Bayesian analysis of a queueing system with unlimited service , 1997 .
[27] P. Vallois,et al. Which distributions have the Matsumoto-Yor property? , 2011 .