Detecting exponential dichotomy on the real line: SVD and QR algorithms
暂无分享,去创建一个
[1] The structurally stable linear systems on the half-line are those with exponential dichotomies , 1979 .
[2] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[3] Wolf-Jürgen Beyn,et al. On well-posed problems for connecting orbits in dynamical systems , 1994 .
[4] Luca Dieci,et al. SVD algorithms to approximate spectra of dynamical systems , 2008, Math. Comput. Simul..
[5] Luca Dieci,et al. Lyapunov and Sacker–Sell Spectral Intervals , 2007 .
[6] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .
[7] Kenneth J. Palmer,et al. Exponential dichotomies and Fredholm operators , 1988 .
[8] W. A. Coppel. Mathematical Control Theory , 1978 .
[9] Robert D. Russell,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[10] Exponential dichotomies for almost periodic equations , 1987 .
[11] Luca Dieci,et al. Exponential dichotomy on the real line: SVD and QR methods , 2010 .
[12] K. Palmer,et al. Shadowing in Dynamical Systems: Theory and Applications , 2010 .
[13] A. Bunse-Gerstner,et al. Numerical computation of an analytic singular value decomposition of a matrix valued function , 1991 .
[14] L. Arnold. Random Dynamical Systems , 2003 .
[15] Kenneth J. Palmer,et al. Shadowing in Dynamical Systems , 2000 .
[16] Kevin Zumbrun,et al. Efficient Computation of Analytic Bases in Evans Function Analysis of Large Systems , 2006, Numerische Mathematik.
[17] Tosio Kato. Perturbation theory for linear operators , 1966 .
[18] Kevin Zumbrun,et al. An efficient shooting algorithm for Evans function calculations in large systems , 2006 .
[19] F. V. Vleck,et al. Stability and Asymptotic Behavior of Differential Equations , 1965 .
[20] Luca Dieci,et al. The singular value decomposition to approximate spectra of dynamical systems. Theoretical aspects , 2006 .
[21] Luca Dieci,et al. Perturbation Theory for Approximation of Lyapunov Exponents by QR Methods , 2006 .
[22] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .
[23] G. Vegter,et al. Algorithms for computing normally hyperbolic invariant manifolds , 1997 .
[24] George R. Sell,et al. Dichotomies for linear evolutionary equations in Banach spaces , 1994 .
[25] K. Palmer. A perturbation theorem for exponential dichotomies , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[26] W. A. Coppel. Dichotomies in Stability Theory , 1978 .
[27] Luca Dieci,et al. Lyapunov and other spectra : a survey ∗ , 2007 .
[28] S. Yau. Mathematics and its applications , 2002 .
[29] Erik S. Van Vleck. On the Error in the Product QR Decomposition , 2010, SIAM J. Matrix Anal. Appl..
[30] S. Pilyugin. Shadowing in dynamical systems , 1999 .
[31] Li︠u︡dmila I︠A︡kovlevna Adrianova. Introduction to linear systems of differential equations , 1995 .
[32] K. Sakamoto. Estimates on the Strength of Exponential Dichotomies and Application to Integral Manifolds , 1994 .
[33] Luca Dieci,et al. On the Error in QR Integration , 2008, SIAM J. Numer. Anal..
[34] Luca Dieci,et al. Lyapunov Spectral Intervals: Theory and Computation , 2002, SIAM J. Numer. Anal..
[35] George R. Sell,et al. A Spectral Theory for Linear Differential Systems , 1978 .
[36] P. Comba,et al. Part I. Theory , 2007 .
[37] Luca Dieci,et al. Computation of invariant tori by the method of characteristics , 1995 .
[38] Gunilla Kreiss,et al. Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals , 1999 .
[39] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[40] L. Barreira,et al. Lyapunov Exponents and Smooth Ergodic Theory , 2002 .
[41] K. Palmer,et al. Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations , 1982 .
[42] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[43] Boris Hasselblatt,et al. Handbook of Dynamical Systems , 2010 .
[44] I Ya Gol'dsheid,et al. Lyapunov indices of a product of random matrices , 1989 .
[45] Luca Dieci,et al. On the error in computing Lyapunov exponents by QR Methods , 2005, Numerische Mathematik.
[46] George R. Sell,et al. Ergodic properties of linear dynamical systems , 1987 .
[47] B. Sandstede,et al. Chapter 18 - Stability of Travelling Waves , 2002 .
[48] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .