Detecting exponential dichotomy on the real line: SVD and QR algorithms

In this paper we propose and implement numerical methods to detect exponential dichotomy on the real line. Our algorithms are based on the singular value decomposition and the QR factorization of a fundamental matrix solution. The theoretical justification for our methods was laid down in the companion paper: “Exponential Dichotomy on the real line: SVD and QR methods.”

[1]  The structurally stable linear systems on the half-line are those with exponential dichotomies , 1979 .

[2]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[3]  Wolf-Jürgen Beyn,et al.  On well-posed problems for connecting orbits in dynamical systems , 1994 .

[4]  Luca Dieci,et al.  SVD algorithms to approximate spectra of dynamical systems , 2008, Math. Comput. Simul..

[5]  Luca Dieci,et al.  Lyapunov and Sacker–Sell Spectral Intervals , 2007 .

[6]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[7]  Kenneth J. Palmer,et al.  Exponential dichotomies and Fredholm operators , 1988 .

[8]  W. A. Coppel Mathematical Control Theory , 1978 .

[9]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[10]  Exponential dichotomies for almost periodic equations , 1987 .

[11]  Luca Dieci,et al.  Exponential dichotomy on the real line: SVD and QR methods , 2010 .

[12]  K. Palmer,et al.  Shadowing in Dynamical Systems: Theory and Applications , 2010 .

[13]  A. Bunse-Gerstner,et al.  Numerical computation of an analytic singular value decomposition of a matrix valued function , 1991 .

[14]  L. Arnold Random Dynamical Systems , 2003 .

[15]  Kenneth J. Palmer,et al.  Shadowing in Dynamical Systems , 2000 .

[16]  Kevin Zumbrun,et al.  Efficient Computation of Analytic Bases in Evans Function Analysis of Large Systems , 2006, Numerische Mathematik.

[17]  Tosio Kato Perturbation theory for linear operators , 1966 .

[18]  Kevin Zumbrun,et al.  An efficient shooting algorithm for Evans function calculations in large systems , 2006 .

[19]  F. V. Vleck,et al.  Stability and Asymptotic Behavior of Differential Equations , 1965 .

[20]  Luca Dieci,et al.  The singular value decomposition to approximate spectra of dynamical systems. Theoretical aspects , 2006 .

[21]  Luca Dieci,et al.  Perturbation Theory for Approximation of Lyapunov Exponents by QR Methods , 2006 .

[22]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[23]  G. Vegter,et al.  Algorithms for computing normally hyperbolic invariant manifolds , 1997 .

[24]  George R. Sell,et al.  Dichotomies for linear evolutionary equations in Banach spaces , 1994 .

[25]  K. Palmer A perturbation theorem for exponential dichotomies , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[26]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[27]  Luca Dieci,et al.  Lyapunov and other spectra : a survey ∗ , 2007 .

[28]  S. Yau Mathematics and its applications , 2002 .

[29]  Erik S. Van Vleck On the Error in the Product QR Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[30]  S. Pilyugin Shadowing in dynamical systems , 1999 .

[31]  Li︠u︡dmila I︠A︡kovlevna Adrianova Introduction to linear systems of differential equations , 1995 .

[32]  K. Sakamoto Estimates on the Strength of Exponential Dichotomies and Application to Integral Manifolds , 1994 .

[33]  Luca Dieci,et al.  On the Error in QR Integration , 2008, SIAM J. Numer. Anal..

[34]  Luca Dieci,et al.  Lyapunov Spectral Intervals: Theory and Computation , 2002, SIAM J. Numer. Anal..

[35]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[36]  P. Comba,et al.  Part I. Theory , 2007 .

[37]  Luca Dieci,et al.  Computation of invariant tori by the method of characteristics , 1995 .

[38]  Gunilla Kreiss,et al.  Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals , 1999 .

[39]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[40]  L. Barreira,et al.  Lyapunov Exponents and Smooth Ergodic Theory , 2002 .

[41]  K. Palmer,et al.  Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations , 1982 .

[42]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[43]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[44]  I Ya Gol'dsheid,et al.  Lyapunov indices of a product of random matrices , 1989 .

[45]  Luca Dieci,et al.  On the error in computing Lyapunov exponents by QR Methods , 2005, Numerische Mathematik.

[46]  George R. Sell,et al.  Ergodic properties of linear dynamical systems , 1987 .

[47]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[48]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .