Practical Statistics for Particle Physicists

These three lectures provide an introduction to the main concepts of statistical data analysis useful for precision measurements and searches for new signals in High Energy Physics. The frequentist and Bayesian approaches to probability theory are introduced and, for both approaches, inference methods are presented. Hypothesis tests will be discussed, then significance and upper limit evaluation will be presented with an overview of the modern and most advanced techniques adopted for data analysis at the Large Hadron Collider.

[1]  Otaviano Helene,et al.  Upper limit of peak area , 1983 .

[2]  P. Clifford,et al.  How to combine correlated estimates of a single physical quantity , 1988 .

[3]  J. Neyman Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability , 1937 .

[4]  H. N. Mhaskar,et al.  Neural Networks for Optimal Approximation of Smooth and Analytic Functions , 1996, Neural Computation.

[5]  Robert Cousins,et al.  Clarification of the use of CHI-square and likelihood functions in fits to histograms , 1984 .

[6]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[8]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[9]  Pierre Simon Laplace Essai philosophique sur les probabilités , 1921 .

[10]  Nicola De Filippis,et al.  Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP , 2013 .

[11]  Martin,et al.  On the determination of the B lifetime by combining the results of different experiments. , 1990, Physical review. D, Particles and fields.

[12]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[13]  M. Dejardin,et al.  Measurement of the top quark mass using proton-proton data at √s=7 and 8 TeV , 2016 .

[14]  Eilam Gross,et al.  Estimating the significance of a signal in a multi-dimensional search , 2011, 1105.4355.

[15]  D. Collaborations,et al.  First combination of Tevatron and LHC measurements of the top-quark mass , 2014, 1403.4427.

[16]  Fons Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[17]  F. James MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1 , 1994 .

[18]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[19]  Luca Lista,et al.  The bias of the unbiased estimator: a study of the iterative application of the BLUE method , 2014, 1405.3425.

[20]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[21]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[22]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[23]  N. Lazar,et al.  The ASA Statement on p-Values: Context, Process, and Purpose , 2016 .

[24]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[25]  Luca Lista,et al.  Statistical Methods for Data Analysis in Particle Physics , 2015 .

[26]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[27]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[28]  B. Roe,et al.  Boosted decision trees as an alternative to artificial neural networks for particle identification , 2004, physics/0408124.

[29]  Roberto Chierici,et al.  Information and treatment of unknown correlations in the combination of measurements using the BLUE method , 2013, 1307.4003.

[30]  E. Gross,et al.  Trial factors for the look elsewhere effect in high energy physics , 2010, 1005.1891.

[31]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[32]  M. Baak,et al.  The global electroweak fit at NNLO and prospects for the LHC and ILC , 2014, 1407.3792.

[33]  A. Read Modified frequentist analysis of search results (The CL(s) method) , 2000 .

[34]  Robert Graham Reed,et al.  Search for resonances decaying to photon pairs in 3.2 fb−1 of pp collisions at s=13 TeV with the ATLAS detector. , 2017 .

[35]  Robert Cousins,et al.  Incorporating systematic uncertainties into an upper limit , 1992 .

[36]  Delphi collaboration,et al.  Search for the Standard Model Higgs Boson at LEP , 2001, hep-ex/0107029.

[37]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .