Exact Exponential Algorithms to Find a Tropical Connected Set of Minimum Size

The input of the Tropical Connected Set problem is a vertex-colored graph \(G=(V,E)\) and the task is to find a connected subset \(S\subseteq V\) of minimum size such that each color of \(G\) appears in \(S\). This problem is known to be NP-complete, even when restricted to trees of height at most three. We show that Tropical Connected Set on trees has no subexponential-time algorithm unless the Exponential Time Hypothesis fails. This motivates the study of exact exponential algorithms to solve Tropical Connected Set. We present an \(\mathcal {O}^*(1.5359^n)\) time algorithm for general graphs and an \(\mathcal {O}^*(1.2721^n)\) time algorithm for trees.

[1]  Christian Komusiewicz,et al.  Parameterized Algorithmics for Finding Connected Motifs in Biological Networks , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[2]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[3]  Roded Sharan,et al.  Topology-Free Querying of Protein Interaction Networks , 2009, RECOMB.

[4]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[5]  Roded Sharan,et al.  Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks , 2006, J. Comput. Biol..

[6]  Yannis Manoussakis,et al.  Connected Tropical Subgraphs in Vertex-Colored Graphs , 2016, Discret. Math. Theor. Comput. Sci..

[7]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[8]  Riccardo Dondi,et al.  Complexity issues in vertex-colored graph pattern matching , 2011, J. Discrete Algorithms.

[9]  Gerhard J. Woeginger,et al.  Exact (Exponential) Algorithms for the Dominating Set Problem , 2004, WG.

[10]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2010, CACM.

[11]  Sylvain Guillemot,et al.  Finding and Counting Vertex-Colored Subtrees , 2010, Algorithmica.

[12]  Dimitrios M. Thilikos,et al.  A Simple and Fast Approach for Solving Problems on Planar Graphs , 2004, STACS.

[13]  Michael R. Fellows,et al.  Sharp Tractability Borderlines for Finding Connected Motifs in Vertex-Colored Graphs , 2007, ICALP.

[14]  Cristina G. Fernandes,et al.  Motif Search in Graphs: Application to Metabolic Networks , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[15]  Michael R. Fellows,et al.  Upper and lower bounds for finding connected motifs in vertex-colored graphs , 2011, J. Comput. Syst. Sci..

[16]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Inclusion-Exclusion , 2012, Algorithmica.

[17]  Geevarghese Philip,et al.  On the Kernelization Complexity of Colorful Motifs , 2010, IPEC.

[18]  Fred R. McMorris,et al.  Triangulating vertex colored graphs , 1994, SODA '93.

[19]  Amer E. Mouawad,et al.  An exact algorithm for connected red-blue dominating set , 2011, J. Discrete Algorithms.