Solar pond modeling with density and viscosity dependent on temperature and salinity

The paper presents a 2D numerical model where the behavior of a salt gradient solar pond (SGSP) is described in terms of temperature, salt concentration and velocity with the fluid density and viscosity dependent on temperature and salt concentration. The discretization of the governing equations is based on the respective weak formulations. The rectangular geometry allows for spectral type Galerkin approximations for which the essential homogeneous boundary conditions can easily be imposed. Taking into account the variation of density and viscosity with temperature and salinity improved the agreement between the numerical and the experimental results.

[1]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[2]  Donald R. F. Harleman,et al.  Thermal stratification in lakes: Analytical and laboratory studies , 1969 .

[3]  G. Ahmadi,et al.  Computer simulation of the performance of a solar pond in the southern part of Iran , 1978 .

[4]  T. Radko A mechanism for layer formation in a double-diffusive fluid , 2003, Journal of Fluid Mechanics.

[5]  K. A. Meyer,et al.  Experimental and theoretical study of salt-gradient pond interface behavior , 1982 .

[6]  Celestino Angeli,et al.  A one-dimensional numerical study of the salt diffusion in a salinity-gradient solar pond , 2004 .

[7]  J. P. Riley,et al.  Numerical Simulation of the Performance of a Salt-Gradient Solar Pond , 1983 .

[8]  J. Boyd Chebyshev & Fourier Spectral Methods , 1989 .

[9]  Margarida Canedo Giestas,et al.  The influence of radiation absorption on solar pond stability , 1996 .

[10]  T. S. Jayadev,et al.  Salt concentration gradient solar ponds - Modeling and optimization , 1979 .

[11]  B. J. Brinkworth,et al.  An analysis of the non-convecting solar pond , 1981 .

[12]  S. Aboul-Enein,et al.  Parametric study of a shallow solar-pond under the batch mode of heat extraction , 2004 .

[13]  Natural convection of high Prandtl number fluids with variable viscosity in a vertical slot , 1996 .

[14]  Margarida Canedo Giestas,et al.  The influence of non-constant diffusivities on solar ponds stability , 1997 .

[15]  Aliakbar Akbarzadeh,et al.  Towards the design of low maintenance salinity gradient solar ponds , 2002 .

[16]  George Veronis,et al.  Effect of a stabilizing gradient of solute on thermal convection , 1968, Journal of Fluid Mechanics.

[17]  W. T. Sha,et al.  Modeling of the Surface Convective Layer of Salt-Gradient Solar Ponds , 1981 .

[18]  D. White,et al.  The planforms and onset of convection with a temperature-dependent viscosity , 1988, Journal of Fluid Mechanics.

[19]  I. Walton Double-diffusive convection with large variable gradients , 1982, Journal of Fluid Mechanics.

[20]  G. Labrosse,et al.  Linear Stability of a Double Diffusive Layer of an Infinite Prandtl Number Fluid with Temperature-Dependent Viscosity , 2004 .

[21]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .

[22]  A. Belghith,et al.  Simulation of the control of a salt gradient solar pond in the south of Tunisia , 2003 .

[23]  Edgar Knobloch,et al.  Oscillations in double-diffusive convection , 1981, Journal of Fluid Mechanics.

[24]  Ibrahim Dincer,et al.  Experimental and theoretical temperature distributions in a solar pond , 2006 .

[25]  Celestino Angeli,et al.  The effect of thermodiffusion on the stability of a salinity gradient solar pond , 2005 .

[26]  Dean S. Oliver,et al.  Onset of convection in a variable-viscosity fluid , 1982, Journal of Fluid Mechanics.

[27]  Hershel Weinberger,et al.  The physics of the solar pond , 1964 .

[28]  Edward A. Spiegel,et al.  Rayleigh‐Bénard Convection: Structures and Dynamics , 1998 .

[29]  Nicolas Galanis,et al.  Transient heat and mass transfer and long-term stability of a salt-gradient solar pond , 2006 .

[30]  J. Tanny,et al.  Linear stability of a double diffusive layer with variable fluid properties , 1995 .

[31]  Manuel G. Velarde,et al.  The Two‐component Bénard Problem , 2007 .

[32]  Stefan Bachu,et al.  Modeling the performance of a solar pond as a source of thermal energy , 1984 .

[33]  D. Lohse,et al.  On geometry effects in Rayleigh–Bénard convection , 2002, Journal of Fluid Mechanics.