Minimum width color spanning annulus

Abstract Given a set P = { p 1 , p 2 , … , p n } of n points in and each assigned with one of the given k distinct colors, we study the problem of finding the minimum width color spanning annulus of different shapes. Specifically, we consider the color spanning circular annulus ( C S C A ), axis-parallel square annulus ( C S S A ), axis parallel rectangular annulus ( C S R A ) , and equilateral triangular annulus of fixed orientation ( C S E T A ) . The time complexities of the proposed algorithms for the respective problems are (i) O ( n 3 log ⁡ n ) for C S C A , (ii) O ( n 3 + n 2 k log ⁡ k ) for C S S A , (iii) O ( n 4 ) for C S R A , and (iv) O ( n 2 k ) for C S E T A .

[1]  Micha Sharir,et al.  Efficient randomized algorithms for some geometric optimization problems , 1996, Discret. Comput. Geom..

[2]  Horst W. Hamacher,et al.  An optimal O(nlogn) algorithm for finding an enclosing planar rectilinear annulus of minimum width , 2009, Oper. Res. Lett..

[3]  Sivan Toledo,et al.  Applications of parametric searching in geometric optimization , 1992, SODA '92.

[4]  Rolf Klein,et al.  The Farthest Color Voronoi Diagram and Related Problems , 2001 .

[5]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..

[6]  Rolf Klein,et al.  Smallest Color-Spanning Objects , 2001, ESA.

[7]  Mohammad Ali Abam,et al.  Computing the Smallest Color-Spanning Axis-Parallel Square , 2013, ISAAC.

[8]  Computing a minimum-width square annulus in arbitrary orientation , 2018, Theor. Comput. Sci..

[9]  Sasanka Roy,et al.  Minimum Width Color Spanning Annulus , 2016, COCOON.

[10]  Micha Sharir,et al.  On Levels in Arrangements of Lines, Segments, Planes, and Triangles% , 1998, Discret. Comput. Geom..

[11]  Sandip Das,et al.  Minimum Width Rectangular Annulus , 2011, FAW-AAIM.

[12]  Danny Ziyi Chen,et al.  Algorithms for interval structures with applications , 2011, Theor. Comput. Sci..

[13]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[14]  Sandip Das,et al.  Smallest Color-Spanning Object Revisited , 2009, Int. J. Comput. Geom. Appl..

[15]  Utpal Roy,et al.  Establishment of a pair of concentric circles with the minimum radial separation for assessing roundness error , 1992, Comput. Aided Des..

[16]  Manuel Abellanas,et al.  Best Fitting Rectangles , 2004 .

[17]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[18]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.