Tailoring wavelength sweep for SS-OCT with a programmable picosecond laser

This paper presents a unique and novel picosecond laser source that offers complete tailoring of the wavelength sweep and that benefits swept-source optical coherence tomography (SS-OCT) applications. Along with the advantages of a fiber-based architecture, the source is a fully programmable, electronically controlled actively mode-locked laser capable of rapidly tuning the wavelength and pulse characteristics. Furthermore, several sweep modes and configurations are available which can be defined by range, with linear sweeps in wavelength or k-space, or by arbitrary wavelengths. The source design is discussed and its use in SS-OCT with a prototype using a semiconductor optical amplifier as a gain medium is illustrated.