Modelling Concrete Behaviour At Early-Age : Multiscale Analysis And Simulation Of A Massive Disposal Structure

The accurate prediction of the long and short-term behaviour of concrete structures in the nuclear domain is essential to ensure optimal performances (integrity, containment roperties) during their service life. In the particular case of massive concrete structures, at early age the heat produced by hydration reactions cannot be evacuated fast enough so that high temperatures may be reached and the resulting gradients of temperature might lead to cracking according to the external and internal restraints to which the structures are subjected. The goals of this study are (1) to perform numerical simulations in order to describe and predict the thermo-chemo-mechanical behaviour at early-age of a massive concrete structure devoted to nuclear waste disposal on surface, and (2) to develop and apply upscaling tools to estimate rigorously the key properties of concrete needed in an early-age analysis from the composition of the material. Firstly, a chemo-thermal analysis aims at determining the influence of convection, solar radiation, reradiation and hydration heat on the thermal response of the structure. Practical recommendations regarding concreting temperatures are provided in order to limit the maximum temperature reached within the structure. Then, by means of a mechanical analysis, simplified and more complex (i.e. accounting for coupled creep and damage) modelling strategies are used to assess scenarios involving different boundary conditions defined from the previous chemo-thermal analysis. Secondly, a study accounting for the multiscale character of concrete is performed. A simplified model of cement hydration kinetics is proposed. The evolution of the different phases at the cement paste level can be estimated. Then, analytical and numerical tools to upscale the ageing properties are presented and applied to estimate the mechanical and thermal properties of cementbased materials. Finally, the input data used in the structural analysis are compared with the estimations obtained in the multiscale analysis. To conclude, the entire strategy proposed in this thesis aims at predicting the behaviour of massive concrete structures from the composition of the concrete by means of a sequenced approach: concrete behaviour is estimated using the upscaling tools, providing then the input data to the phenomenological analysis at the structure level.

[1]  T. C. Powers,et al.  Physical Properties of Cement Paste , 1960 .

[2]  Teng-fong Wong,et al.  Thermal expansion of rocks; some measurements at high pressure , 1979 .

[3]  S. Bishnoi Vector modelling of hydrating cement microstructure and kinetics , 2008 .

[4]  Christian Huet,et al.  Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies , 1999 .

[5]  G. J. Creus,et al.  Periodic homogenization in thermoviscoelasticity: case of multilayered media with ageing , 2003 .

[6]  M. Daimon,et al.  Pore Structure of Calcium Silicate Hydrate in Hydrated Tricalcium Silicate , 1977 .

[7]  F. Kloss,et al.  Influence of aggregate shapes on drying and carbonation phenomena in 3D concrete numerical samples , 2013 .

[8]  H. Schorn,et al.  Numerical simulation of crack propagation from microcracking to fracture , 1991 .

[9]  J. Biernacki,et al.  The effect of water-to-cement ratio on the hydration kinetics of tricalcium silicate cements: Testing the two-step hydration hypothesis , 2012 .

[10]  Batian Kolani,et al.  Comportement au jeune âge des structures en béton armé à base de liants composés aux laitiers , 2012 .

[11]  P. Termkhajornkit,et al.  Modeling the coupled effects of temperature and fineness of Portland cement on the hydration kinetics in cement paste , 2012 .

[12]  Zhihui Sun,et al.  Modeling the elastic properties of concrete composites: Experiment, differential effective medium theory, and numerical simulation , 2007 .

[13]  Fernando Lopez-Caballero,et al.  Methodology for a probabilistic analysis of an RCC gravity dam construction. Modelling of temperature, hydration degree and ageing degree fields , 2014 .

[14]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[15]  William John McCarter,et al.  Influence of practical curing methods on evaporation of water from freshly placed concrete in hot climates , 2001 .

[16]  Farid Benboudjema,et al.  Evaluation of the contribution of boundary and initial conditions in the chemo-thermal analysis of a massive concrete structure , 2014 .

[17]  Quang Huy Do Modelling Properties of Cement Paste from Microstructure: Porosity, Mechanical Properties, Creep and Shrinkage , 2013 .

[18]  Stefan Scheiner,et al.  Continuum Microviscoelasticity Model for Aging Basic Creep of Early-Age Concrete , 2009 .

[19]  V. Buscaglia,et al.  On the diffusional growth of compounds with narrow homogeneity range in multiphase binary systems , 2002 .

[20]  P. Wriggers,et al.  Mesoscale models for concrete: homogenisation and damage behaviour , 2006 .

[21]  W. H. Parsons,et al.  Thermal expansion of concrete aggregate materials , 1944 .

[22]  Pero Dabić,et al.  A conceptual model of the cement hydration process , 2000 .

[23]  Ahmed Loukili,et al.  A new approach to determine autogenous shrinkage of mortar at an early age considering temperature history , 2000 .

[24]  S. Torquato,et al.  Nearest-surface distribution functions for polydispersed particle systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  Franz H. Heukamp,et al.  Chemomechanics of calcium leaching of cement-based materials at different scales : the role of CH-dissolution and C-S-H degradation on strength and durability performance of materials and structures , 2003 .

[26]  Benjamin Pfaff Theory Of Functionals And Of Integral And Integro Differential Equations , 2016 .

[27]  Christian Meyer,et al.  Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure , 2009 .

[28]  Y. Benveniste,et al.  A micromechanics model for the effective thermomechanical behaviour of multiphase composite media , 1991 .

[29]  R. W. Cannon,et al.  EFFECT OF RESTRAINT, VOLUME CHANGE, AND REINFORCEMENT ON CRACKING OF MASSIVE CONCRETE , 1973 .

[30]  Jeffrey J. Thomas,et al.  A Reaction Zone Hypothesis for the Effects of Particle Size and Water‐to‐Cement Ratio on the Early Hydration Kinetics of C3S , 2014 .

[31]  Claudio Mazzotti,et al.  Nonlinear Creep Damage Model for Concrete under Uniaxial Compression , 2003 .

[32]  Z. M. Wang,et al.  Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh , 1999 .

[33]  Franz-Josef Ulm,et al.  Microprestress-Solidification Theory for Concrete Creep. I: Aging and Drying Effects , 1997 .

[34]  Franz-Josef Ulm,et al.  Nanogranular origin of concrete creep , 2009, Proceedings of the National Academy of Sciences.

[35]  Zdeněk P. Bažant,et al.  Thermodynamic functions for ageing viscoelasticity : Integral form without internal variables , 1999 .

[36]  Hamlin M. Jennings,et al.  Refinements to colloid model of C-S-H in cement: CM-II , 2008 .

[37]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[38]  Toyoharu Nawa,et al.  Modeling of early age behavior of blast furnace slag concrete based on micro-physical properties , 2011 .

[39]  Herbert A. Mang,et al.  Consistent linearization in Finite Element analysis of coupled chemo-thermal problems with exo- or endothermal reactions , 1999 .

[40]  Harry H. Hilton,et al.  The significance of (an)isotropic viscoelastic Poisson ratio stress and time dependencies , 1998 .

[41]  A. L. Marshall,et al.  The thermal properties of concrete , 1972 .

[42]  J. Sanahuja Efficient Homogenization of Ageing Creep of Random Media: Application to Solidifying Cementitious Materials , 2013 .

[43]  Dale P. Bentz,et al.  A review of early-age properties of cement-based materials , 2008 .

[44]  Y. Benveniste On the effective thermal conductivity of multiphase composites , 1986 .

[45]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[46]  Rui Faria,et al.  Modelling of concrete at early ages: Application to an externally restrained slab , 2006 .

[47]  Farid Benboudjema,et al.  Modeling basic creep in concrete at early-age under compressive and tensile loading , 2014 .

[48]  de R René Borst,et al.  Finite-Element Modeling of Deformation and Cracking in Early-Age Concrete , 1994 .

[49]  Edward J. Garboczi,et al.  Analytical formulas for interfacial transition zone properties , 1997 .

[50]  B. Klemczak,et al.  Reinforced concrete tank walls and bridge abutments: Early-age behaviour, analytic approaches and numerical models , 2015 .

[51]  Dale P. Bentz,et al.  Influence of Water-to-Cement Ratio on Hydration Kinetics: Simple Models Based on Spatial Considerations , 2006 .

[52]  C. Toulemonde,et al.  Investigation of the effect of aggregates' morphology on concrete creep properties by numerical simulations , 2015 .

[53]  D. Macphee,et al.  Estimation of the thermal properties of hardened cement paste on the basis of guarded heat flow meter measurements , 2014 .

[54]  W. Kondo,et al.  Kinetics of the Hydration of Tricalcium Silicate , 1974 .

[55]  Denis Damidot,et al.  Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker , 2001 .

[56]  Karen L. Scrivener,et al.  Understanding the Filler Effect on the Nucleation and Growth of C-S-H , 2014 .

[57]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[58]  N. Reviron,et al.  Coupling between creep and cracking in tension , 2022 .

[59]  G. S. Hasanain,et al.  Water evaporation from freshly placed concrete surfaces in hot weather , 1989 .

[60]  E. Lachowski,et al.  Clinker Mineral Hydration at Reduced Relative Humidities , 1999 .

[61]  Surendra P. Shah,et al.  Modeling the linear elastic properties of Portland cement paste , 2005 .

[62]  Bart Craeye,et al.  Early age behaviour of concrete supercontainers for radioactive waste disposal , 2009 .

[63]  Pietro Lura,et al.  Moisture dependence of thermal expansion in cement-based materials at early ages , 2013 .

[64]  M. Gillen,et al.  Thermal expansion of Portland cement paste, mortar and concrete at high temperatures , 1980 .

[65]  Paulo J.M. Monteiro,et al.  An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste , 2002 .

[66]  F. Benboudjema,et al.  Factors affecting the thermo-chemo-mechanical behaviour of massive concrete structures at early-age , 2016 .

[67]  Jin-keun Kim,et al.  An experimental study on thermal conductivity of concrete , 2003 .

[68]  T. D. Larrard Variabilité des propriétés du béton : caractérisation expérimentale et modélisation probabiliste de la lixiviation , 2010 .

[69]  G. Milton The Theory of Composites , 2002 .

[70]  Mohammad Iqbal Khan,et al.  Factors affecting the thermal properties of concrete and applicability of its prediction models , 2002 .

[71]  A. Sellier,et al.  Analysis of interactions between damage and basic creep of HPC and HPFRC heated between 20 and 80 °C , 2013 .

[72]  Farid Benboudjema,et al.  Creep Consideration Effect on Meso-Scale Modeling of Concrete Hydration Process and Consequences on the Mechanical Behavior , 2013 .

[73]  Bart Craeye,et al.  Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks , 2011 .

[74]  Jeffrey J. Thomas,et al.  A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste , 2006 .

[75]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[76]  Multiscale Estimation of the Viscoelastic Properties of Cementitious Materials at an Early Age: A Combined Analytical and Numerical Approach , 2015 .

[77]  James Saling,et al.  Radioactive Waste Management , 1990 .

[78]  John Bensted,et al.  Hydration of Portland Cement , 1983 .

[79]  Benoît Bary,et al.  Numerical and analytical effective elastic properties of degraded cement pastes , 2009 .

[80]  Shashank Bishnoi,et al.  µic: A New Platform for Modelling the Hydration of Cements , 2009 .

[81]  S. Diamond Delayed ettringite formation — Processes and problems , 1996 .

[82]  A. Bezjak,et al.  On the determination of rat constants for hydration processes in cement pastes , 1980 .

[83]  S. Torquato,et al.  Scale effects on the elastic behavior of periodic andhierarchical two-dimensional composites , 1999 .

[84]  John W. Cahn,et al.  The kinetics of grain boundary nucleated reactions , 1956 .

[85]  André Zaoui,et al.  n-Layered inclusion-based micromechanical modelling , 1993 .

[86]  W. Dridi,et al.  Combs: open source python library for RVE generation. Application to microscale diffusion simulations in cementitious materials , 2014, ICS 2014.

[87]  Adrien Hilaire,et al.  Etude des déformations différées des bétons en compression et en traction, du jeune au long terme : application aux enceintes de confinement , 2014 .

[88]  Dale P Bentz,et al.  CEMHYD3D:: a three-dimensional cement hydration and microstructure development modelling package , 1997 .

[89]  Luc Taerwe,et al.  Fracture energy of concrete at early ages , 1997 .

[90]  P Laplante PROPRIETES MECANIQUES DES BETONS DURCISSANTS : ANALYSE COMPAREE DES BETONS CLASSIQUES ET A TRES HAUTES PERFORMANCES , 1993 .

[91]  Jie Zhang,et al.  Nucleation and growth models for hydration of cement , 2012 .

[92]  I C Potgieter,et al.  RESPONSE OF HIGHWAY BRIDGES TO NONLINEAR TEMPERATURE DISTRIBUTIONS. CIVIL ENGINEERING STUDIES. FINAL REPORT , 1983 .

[93]  N. Ukrainczyk,et al.  Thermal properties of hydrating calcium aluminate cement pastes , 2010 .

[94]  B. Sharratt,et al.  Thermal properties of soil , 2001 .

[95]  Wilhelm Jander,et al.  Reaktionen im festen Zustande bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen , 1927 .

[96]  Franz-Josef Ulm,et al.  A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials , 2003 .

[97]  B. Bary,et al.  Assessment of diffusive and mechanical properties of hardened cement pastes using a multi-coated sphere assemblage model , 2006 .

[98]  M. S. Kersten,et al.  Thermal Properties of Soils , 1952 .

[99]  C. Chang,et al.  The elastic moduli of calcium hydroxide , 1995 .

[100]  F. Dufour,et al.  Damage Mechanics of Cementitious Materials and Structures , 2011 .

[101]  H. Jennings Colloid model of C−S−H and implications to the problem of creep and shrinkage , 2004 .

[102]  J. Bullard,et al.  Mechanisms of cement hydration , 2011 .

[103]  Jean-Louis Tailhan,et al.  Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission , 2012 .

[104]  K. Scrivener,et al.  Studying nucleation and growth kinetics of alite hydration using μic , 2009 .

[105]  Matthieu Briffaut,et al.  Etude de la fissuration au jeune âge des structures massives en béton : influence de la vitesse de refroidissement, des reprises de bétonnage et des armatures , 2010 .

[106]  K. Scrivener,et al.  Densification of C–S–H Measured by 1H NMR Relaxometry , 2013 .

[107]  Ammar Khawam,et al.  Solid‐State Kinetic Models: Basics and Mathematical Fundamentals , 2006 .

[108]  Alain Sellier,et al.  Application of thermo-hydro-chemo-mechanical model for early age behaviour of concrete to experimental massive reinforced structures with strain–restraining system , 2014 .

[109]  K. Scrivener,et al.  The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete , 2004 .

[110]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[111]  A. Khelidj,et al.  Experimental study and modelling approaches for the thermal conductivity evolution of hydrating cement paste , 2004 .

[112]  Lucie Vandewalle,et al.  Effect of mineral filler type on autogenous shrinkage of self-compacting concrete , 2010 .

[113]  G. De Schutter Fundamental study of early age concrete behaviour as a basis for durable concrete structures , 2002 .

[114]  Arnon Bentur,et al.  Early Age Shrinkage and Cracking in Cementitious Systems , 2010 .

[115]  Dale P. Bentz,et al.  Transient plane source measurements of the thermal properties of hydrating cement pastes , 2007 .

[116]  Miguel Azenha Numerical simulation of the structural behaviour of concrete since its early ages , 2012 .

[117]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[118]  F. H. Wittmann,et al.  On the analysis of the failure process in composite materials by numerical simulation , 1988 .

[119]  Bernhard A. Schrefler,et al.  Hygro‐thermo‐chemo‐mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygro‐thermal phenomena , 2006 .

[120]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[121]  G. De Schutter,et al.  Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws , 2002 .

[122]  K. Sab On the homogenization and the simulation of random materials , 1992 .

[123]  K. Van Breugel,et al.  Simulation of hydration and formation of structure in hardening cement-based materials , 1991 .

[124]  Siham Kamali Comportement et simulation des matériaux cimentaires en environnement agressifs : Lixiviation et température , 2003 .

[125]  G. D. Schutter Degree of hydration based Kelvin model for the basic creep of early age concrete , 1999 .

[126]  Richard Schapery Thermal Expansion Coefficients of Composite Materials Based on Energy Principles , 1968 .

[127]  J. Bullard,et al.  Why alite stops hydrating below 80% relative humidity , 2011 .

[128]  Omar T Farouki,et al.  Thermal properties of soils , 1981 .

[129]  H. Jennings,et al.  A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes , 2000 .

[130]  Alex Vasenkov Multi-Scale modeling and simulations of materials , 2013 .

[131]  F. Ulm,et al.  The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling , 2004 .

[132]  Jacob Lubliner,et al.  On ageing viscoelastic materials , 1966 .

[133]  Farid Benboudjema,et al.  Effects of early-age thermal behaviour on damage risks in massive concrete structures , 2012 .

[134]  Farid Benboudjema,et al.  Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures , 2011 .

[135]  Y. Benveniste,et al.  Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case , 1987 .

[136]  L. P. Filippov,et al.  Handbook of Thermal Conductivity of Liquids and Gases , 1993 .

[137]  J. Biernacki,et al.  An Advanced Single Particle Model for C3S and Alite Hydration , 2011 .

[138]  P. Acker Swelling, shrinkage and creep: a mechanical approach to cement hydration , 2004 .

[139]  C. Hoover,et al.  Experimental chemo-mechanics of early-age fracture properties of cement paste , 2015 .

[140]  R. Winarski,et al.  Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review , 2013, International Journal of Concrete Structures and Materials.

[141]  J. Sanahuja Effective behaviour of ageing linear viscoelastic composites: Homogenization approach , 2013 .

[142]  F. Benboudjema MODELISATION DES DEFORMATIONS DIFFEREES DU BETON SOUS SOLLICITATIONS BIAXIALES. APPLICATION AUX ENCEINTES DE CONFINEMENT DE BATIMENTS REACTEURS DES CENTRALES NUCLEAIRES , 2002 .

[143]  Pavla Rovnaníková,et al.  Transport processes in concrete , 2002 .

[144]  A. Polyanin Handbook of Linear Partial Differential Equations for Engineers and Scientists , 2001 .

[145]  A. Whitten,et al.  Hydration Processes in Tricalcium Silicate : Application of the Boundary Nucleation Model to Quasielastic Neutron Scattering Data , 2009 .

[146]  C. Toulemonde,et al.  Numerical homogenization of concrete microstructures without explicit meshes , 2011 .

[147]  Julien Yvonnet,et al.  A critical comparison of several numerical methods for computing effective properties of highly heterogeneous materials , 2013, Adv. Eng. Softw..

[148]  Alain Sellier,et al.  Multiphasic Finite Element Modeling of Concrete Hydration , 2007 .

[149]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[150]  P. Mounanga Étude expérimentale du comportement de pâtes de ciment au très jeune âge : hydratation, retraits, propriétés thermophysiques , 2003 .

[151]  Measurement of aggregate interfacial porosity in complex, multi-phase aggregate concrete: Binary mask production using backscattered electron, and energy dispersive X-ray images , 2006 .

[152]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[153]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[154]  P. Montarnal,et al.  Modelling and simulations of the chemo-mechanical behaviour of leached cement-based materials Leaching process and induced loss of stiffness , 2009 .

[155]  Gianluca Cusatis,et al.  Temperature Effect on Concrete Creep Modeled by Microprestress-Solidification Theory , 2004 .

[156]  Olivier Coussy,et al.  Couplings in early-age concrete: From material modeling to structural design , 1998 .

[157]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[158]  Franz-Josef Ulm,et al.  Creep and shrinkage of concrete: physical origins and practical measurements , 2001 .

[159]  Franz-Josef Ulm,et al.  Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties , 2004 .

[160]  Olivier Coussy,et al.  What is a massive concrete structure at early ages? Some dimensional arguments , 2001 .

[161]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[162]  Zdeněk P. Bažant,et al.  Viscoelasticity with Aging Caused by Solidification of Nonaging Constituent , 1993 .

[163]  Luc Dormieux,et al.  Creep of a C-S-H gel: a micromechanical approach. , 2010, Anais da Academia Brasileira de Ciencias.

[164]  Viggo Tvergaard,et al.  Comparison of Crystal Plasticity and Isotropic Hardening Predictions for Metal-Matrix Composites , 1993 .

[165]  K. Breugel,et al.  Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms , 2003 .

[166]  James R. Clifton,et al.  Mathematical modeling of tricalcium silicate hydration , 1979 .

[167]  Roman Lackner,et al.  Multi-phase hydration model for prediction of hydration-heat release of blended cements , 2008 .

[168]  M. Sule,et al.  The effect of reinforcement on early-age cracking due to autogenous shrinkage and thermal effects , 2004 .

[169]  Sidney Yip,et al.  Multiscale materials modelling at the mesoscale. , 2013, Nature materials.

[170]  Wolfgang Ziegler,et al.  Creep And Shrinkage In Concrete Structures , 2016 .

[171]  S. Ghabezloo Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste , 2011, 1102.1281.

[172]  Qi‐Chang He,et al.  A homogenization-enriched viscodamage model for cement-based material creep , 2014 .

[173]  R. Chamrova Modelling and measurement of elastic properties of hydrating cement paste , 2010 .

[174]  Gilles Chanvillard,et al.  Modelling Elasticity of a Hydrating Cement Paste , 2007 .

[175]  Costoya Fernández,et al.  Effect of particle size on the hydration kinetics and microstructural development of tricalcium silicate , 2008 .

[176]  M. Matallah,et al.  A practical method to estimate crack openings in concrete structures , 2009 .

[177]  G. Scherer Models of confined growth , 2012 .

[178]  Ø. Bjøntegaard,et al.  Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction , 2006 .

[179]  Bart Craeye Early-age thermo-mechanical behaviour of concrete Supercontainers for radwaste disposal , 2010 .

[180]  O. Carpentier,et al.  A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures , 2008 .

[181]  Donald F. Adams,et al.  Transverse Normal Loading of a Unidirectional Composite , 1967 .

[182]  A. J. Jerri Introduction to Integral Equations With Applications , 1985 .

[183]  Aditya Kumar,et al.  Modelling earle age hydration kinetics of alite , 2012 .

[184]  Zdenek P. Bazant,et al.  Identification of Viscoelastic C-S-H Behavior in Mature Cement Paste by FFT-based Homogenization Method , 2010 .

[185]  A. Nonat,et al.  Hydration of cementitious materials, present and future , 2011 .

[187]  L. Daemen,et al.  Anisotropic thermal expansion and hydrogen bonding behavior of portlandite: A high-temperature neutron diffraction study , 2007 .

[188]  J. Hattel,et al.  A numerical model for predicting the thermomechanical conditions during hydration of early-age concrete , 2003 .

[189]  F. Ulm,et al.  Nanoindentation investigation of creep properties of calcium silicate hydrates , 2013 .

[190]  Jeffrey J. Thomas,et al.  A New Approach to Modeling the Nucleation and Growth Kinetics of Tricalcium Silicate Hydration , 2007 .

[191]  D.D.L. Chung,et al.  Effect of sand addition on the specific heat and thermal conductivity of cement , 2000 .

[192]  Zdenek P. Bazant Viscoelasticity of Solidifying Porous Material-Concrete , 1977 .

[193]  P. Navi,et al.  Simulation of cement paste microstructure hydration, pore space characterization and permeability determination , 2005 .