On chromatic Zagreb indices of certain graphs

Let G be a finite and simple undirected connected graph of order n ≥ 1 and let φ be a proper vertex colouring of G. Denote φ : vi 7→ cj simply, c(vi) = cj . In this paper, we introduce a variation of the well-known Zagreb indices by utilising the parameter c(v) instead of the invariant d(v) for all vertices of G. The new indices are called chromatic Zagreb indices. We study these new indices for certain classes of graphs and introduce the notion of chromatically stable graphs.

[1]  G. Fath-Tabar Old and New Zagreb Indices of Graphs , 2011 .

[2]  Michael O. Albertson,et al.  The Irregularity of a Graph , 1997, Ars Comb..

[3]  Gary Chartrand,et al.  Chromatic Graph Theory , 2008 .

[4]  N. Sudev,et al.  Generalised colouring sums of graphs , 2016 .

[5]  N. K. Sudev,et al.  Certain chromatic sums of some cycle-related graph classes , 2016, Discret. Math. Algorithms Appl..

[6]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[7]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[8]  Frank Harary,et al.  The number of caterpillars , 1973, Discret. Math..

[9]  Frank Harary,et al.  Graph Theory , 2016 .

[10]  Frank Harary,et al.  Graphical enumeration , 1973 .

[11]  Hosam Abdo,et al.  The Total Irregularity of a Graph , 2012, Discret. Math. Theor. Comput. Sci..

[12]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[13]  Mehdi Behzad,et al.  Graphs and Digraphs , 1981, The Mathematical Gazette.

[14]  Ali Reza Ashrafi,et al.  The Zagreb coindices of graph operations , 2010, Discret. Appl. Math..

[15]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[16]  ˇ TomislavDo,et al.  Vertex-Weighted Wiener Polynomials for Composite Graphs , 2008 .

[17]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[18]  Gerhard J. Woeginger,et al.  Graph colorings , 2005, Theor. Comput. Sci..

[19]  D. West Introduction to Graph Theory , 1995 .