A Two-Queue Polling Model with Two Priority Levels in the First Queue

In this paper we consider a single-server cyclic polling system consisting of two queues. Between visits to successive queues, the server is delayed by a random switch-over time. Two types of customers arrive at the first queue: high and low priority customers. For this situation the following service disciplines are considered: gated, globally gated, and exhaustive. We study the cycle time distribution, the waiting times for each customer type, the joint queue length distribution at polling epochs, and the steady-state marginal queue length distributions for each customer type.

[1]  Lajos Takács Two Queues Attended by a Single Server , 1968, Oper. Res..

[2]  Yutaka Takahashi,et al.  Queueing analysis: A foundation of performance evaluation, volume 1: Vacation and priority systems, Part 1: by H. Takagi. Elsevier Science Publishers, Amsterdam, The Netherlands, April 1991. ISBN: 0-444-88910-8 , 1993 .

[3]  Robert B. Cooper,et al.  Stochastic Decompositions in the M/G/1 Queue with Generalized Vacations , 1985, Oper. Res..

[4]  Vincent Hodgson,et al.  The Single Server Queue. , 1972 .

[5]  Geert J. Heijenk,et al.  Polling Best Effort Traffic in Bluetooth , 2002, Wirel. Pers. Commun..

[6]  Adam Wierman,et al.  Scheduling in polling systems , 2007, Perform. Evaluation.

[7]  Qiang Ni,et al.  Performance analysis and enhancements for IEEE 802.11e wireless networks , 2005, IEEE Network.

[8]  R. Luchsinger,et al.  Zentrale Hörstörungen mit Paramusie nach Contusio cerebri , 1947 .

[9]  Hanoch Levy,et al.  Cyclic reservation schemes for efficient operation of multiple-queue single-server systems , 1992, Ann. Oper. Res..

[10]  Andrea Zanella,et al.  Performance Evaluation of Bluetooth Polling Schemes: An Analytical Approach , 2004, Mob. Networks Appl..

[11]  Eitan Altman,et al.  Polling systems with synchronization constraints , 1992, Ann. Oper. Res..

[12]  Martin Eisenberg,et al.  Queues with Periodic Service and Changeover Time , 1972, Oper. Res..

[13]  Robert B. Cooper,et al.  Queues served in cyclic order , 1969 .

[14]  C. Marshall The Single Server Queue, Revised Edition , 1983 .

[15]  MiorandiDaniele,et al.  Performance evaluation of Bluetooth polling schemes , 2004 .

[16]  C.E.M. Pearce,et al.  On the application of a polling model with non-zero walk times and priority processing to a medical emergency-room environment , 2001, Proceedings of the 23rd International Conference on Information Technology Interfaces, 2001. ITI 2001..

[17]  Onno J. Boxma,et al.  Workloads and waiting times in single-server systems with multiple customer classes , 1989, Queueing Syst. Theory Appl..

[18]  Emm Erik Winands,et al.  Polling, production & priorities , 2007 .

[19]  Ivo J. B. F. Adan,et al.  A polling model with multiple priority levels , 2010, Perform. Evaluation.

[20]  Onno Boxma,et al.  A Two-Queue Polling Model with Two Priority Levels in the First Queue , 2008, Discret. Event Dyn. Syst..

[21]  Onno Boxma,et al.  Waiting times in polling systems with various service disciplines , 2008 .

[22]  Victor C. M. Leung,et al.  Polling-based protocols for packet voice transport over IEEE 802.11 wireless local area networks , 2006, IEEE Wireless Communications.

[23]  Ivo J. B. F. Adan,et al.  Mixed gated/exhaustive service in a polling model with priorities , 2009, Queueing Syst. Theory Appl..

[24]  J. George Shanthikumar Level crossing analysis of priority queues and a conservation identity for vacation models , 1989 .

[25]  Offer Kella,et al.  Priorities in M/G/1 queue with server vacations , 1988 .

[26]  Sem C. Borst,et al.  Polling Models With and Without Switchover Times , 1997, Oper. Res..

[27]  Jacques Resing,et al.  Polling systems and multitype branching processes , 1993, Queueing Syst. Theory Appl..

[28]  Ivo J. B. F. Adan,et al.  Mean value analysis for polling systems , 2006, Queueing Syst. Theory Appl..