Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics

Cells do not live in a vacuum, but in a milieu defined by cell–cell communication that can be measured via emerging high-resolution spatial transcriptomics approaches. However, analytical tools that fully leverage such data for kinetic modeling remain lacking. Here we present Spateo (aristoteleo/spateo-release), a general framework for quantitative spatiotemporal modeling of single-cell resolution spatial transcriptomics. Spateo delivers novel methods for digitizing spatial layers/columns to identify spatially-polar genes, and develops a comprehensive framework of cell-cell interaction to reveal spatial effects of niche factors and cell type-specific ligand-receptor interactions. Furthermore, Spateo reconstructs 3D models of whole embryos, and performs 3D morphometric analyses. Lastly, Spateo introduces the concept of “morphometric vector field” of cell migrations, and integrates spatial differential geometry to unveil regulatory programs underlying various organogenesis patterns of Drosophila. Thus, Spateo enables the study of the ecology of organs at a molecular level in 3D space, beyond isolated single cells.

[1]  Huanming Yang,et al.  Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration , 2022, Science.

[2]  H. Kang,et al.  STtools: a comprehensive software pipeline for ultra-high-resolution spatial transcriptomics data , 2022, Bioinformatics advances.

[3]  Philip S. Yu,et al.  Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment , 2022, Nature Genetics.

[4]  Brian R. Long,et al.  Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH , 2022, Science.

[5]  W. Han,et al.  Spatial epitranscriptomics reveals A-to-I editome specific to cancer stem cell microniches , 2022, Nature Communications.

[6]  Huanming Yang,et al.  The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. , 2022, Developmental cell.

[7]  Yuxiang Li,et al.  High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae. , 2022, Developmental cell.

[8]  J. Sáez-Rodríguez,et al.  Explainable multiview framework for dissecting spatial relationships from highly multiplexed data , 2022, Genome Biology.

[9]  A. Regev,et al.  DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data , 2022, Nature Biotechnology.

[10]  J. Saez-Rodriguez,et al.  The spatial transcriptomic landscape of the healing mouse intestine following damage , 2022, Nature Communications.

[11]  Benjamin J. Raphael,et al.  Belayer: Modeling discrete and continuous spatial variation in gene expression from spatially resolved transcriptomics , 2022, bioRxiv.

[12]  Aaron J. Wilk,et al.  Comparative analysis of cell–cell communication at single-cell resolution , 2022, bioRxiv.

[13]  Fabian J Theis,et al.  Squidpy: a scalable framework for spatial omics analysis , 2022, Nature Methods.

[14]  M. van de Rijn,et al.  The immunoregulatory landscape of human tuberculosis granulomas , 2022, Nature Immunology.

[15]  Evan Z. Macosko,et al.  Cell type-specific inference of differential expression in spatial transcriptomics , 2021, Nature Methods.

[16]  Gary D Bader,et al.  The reactome pathway knowledgebase 2022 , 2021, Nucleic Acids Res..

[17]  Huanming Yang,et al.  Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays , 2021, Cell.

[18]  Shihua Zhang,et al.  Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder , 2021, Nature Communications.

[19]  Benjamin J. Raphael,et al.  Alignment and Integration of Spatial Transcriptomics Data , 2021, bioRxiv.

[20]  Junedh M. Amrute,et al.  Spatial multi-omic map of human myocardial infarction , 2020, Nature.

[21]  J. Weissman,et al.  Mapping Transcriptomic Vector Fields of Single Cells , 2022, Cell.

[22]  John M. Ashton,et al.  Characterizing Neonatal Heart Maturation, Regeneration, and Scar Resolution Using Spatial Transcriptomics , 2021, Journal of cardiovascular development and disease.

[23]  Mingyao Li,et al.  SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network , 2021, Nature Methods.

[24]  Yuxiang Li,et al.  Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis , 2021, bioRxiv.

[25]  B. Göttgens,et al.  Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis , 2021, Nature biotechnology.

[26]  Fabian J Theis,et al.  Learning cell communication from spatial graphs of cells , 2021, bioRxiv.

[27]  Kok Siong Ang,et al.  Unsupervised spatially embedded deep representation of spatial transcriptomics , 2021, bioRxiv.

[28]  H. Kang,et al.  Microscopic examination of spatial transcriptome using Seq-Scope , 2021, Cell.

[29]  Raphael Gottardo,et al.  Spatial transcriptomics at subspot resolution with BayesSpace , 2021, Nature Biotechnology.

[30]  J. Marioni,et al.  Cells of the human intestinal tract mapped across space and time , 2021, Nature.

[31]  R. Palmiter,et al.  Continuous Polony Gels for Tissue Mapping with High Resolution and RNA Capture Efficiency , 2021, bioRxiv.

[32]  J. Butcher,et al.  Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis , 2021, Nature Communications.

[33]  Michael T. Eadon,et al.  The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline , 2021, eLife.

[34]  Lia S. Campos,et al.  Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro , 2021, Nature Genetics.

[35]  N. Ashley,et al.  Spatiotemporal analysis of human intestinal development at single-cell resolution , 2021, Cell.

[36]  Bryan D. Bryson,et al.  Single Cell and Spatial Transcriptomics Defines the Cellular Architecture of the Antimicrobial Response Network in Human Leprosy Granulomas , 2020, bioRxiv.

[37]  Michael L. Waskom,et al.  Seaborn: Statistical Data Visualization , 2021, J. Open Source Softw..

[38]  Xin Shao,et al.  CellTalkDB: a manually curated database of ligand-receptor interactions in humans and mice , 2020, Briefings Bioinform..

[39]  Edward S Boyden,et al.  Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems , 2020, Science.

[40]  Rafael A. Irizarry,et al.  Robust decomposition of cell type mixtures in spatial transcriptomics , 2020, Nature Biotechnology.

[41]  Guocheng Yuan,et al.  Giotto, a toolbox for integrative analysis and visualization of spatial expression data , 2020 .

[42]  Z. Bar-Joseph,et al.  GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data , 2020, Genome biology.

[43]  Evan Z. Macosko,et al.  Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 , 2020, Nature Biotechnology.

[44]  Lise Morizur,et al.  Syndecan-1 Stimulates Adult Neurogenesis in the Mouse Ventricular-Subventricular Zone after Injury , 2020, iScience.

[45]  David F. Boyd,et al.  Exuberant fibroblast activity compromises lung function via ADAMTS4 , 2020, Nature.

[46]  Catherine L. Worth,et al.  Cells of the adult human heart , 2020, Nature.

[47]  N. Picard,et al.  Spatial validation reveals poor predictive performance of large-scale ecological mapping models , 2020, Nature Communications.

[48]  R. Shivdasani,et al.  Cellular and molecular architecture of the intestinal stem cell niche , 2020, Nature Cell Biology.

[49]  P. Janmey,et al.  Effects of extracellular matrix viscoelasticity on cellular behaviour , 2020, Nature.

[50]  Joakim Lundeberg,et al.  Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer’s Disease , 2020, Cell.

[51]  Adam J. Rubin,et al.  Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma , 2020, Cell.

[52]  Shao-yi Lin,et al.  The Role of Transcription Factor 21 in Epicardial Cell Differentiation and the Development of Coronary Heart Disease , 2020, Frontiers in Cell and Developmental Biology.

[53]  Q. Nguyen,et al.  stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues , 2020, bioRxiv.

[54]  J. Fowler,et al.  Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium , 2020, Nature Genetics.

[55]  Q. Nie,et al.  Inferring spatial and signaling relationships between cells from single cell transcriptomic data , 2020, Nature Communications.

[56]  Mirjana Efremova,et al.  CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes , 2020, Nature Protocols.

[57]  Shiquan Sun,et al.  Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies , 2020, Nature Methods.

[58]  Sean K. Simmons,et al.  In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes , 2019, Science.

[59]  Andrei Zinovyev,et al.  Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph , 2018, Entropy.

[60]  Joakim Lundeberg,et al.  A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart , 2019, Cell.

[61]  Y. Saeys,et al.  NicheNet: modeling intercellular communication by linking ligands to target genes , 2019, Nature Methods.

[62]  N. Friedman,et al.  Gene expression cartography , 2019, Nature.

[63]  Fred A. Hamprecht,et al.  ilastik: interactive machine learning for (bio)image analysis , 2019, Nature Methods.

[64]  Richard Bonneau,et al.  High-definition spatial transcriptomics for in situ tissue profiling , 2019, Nature Methods.

[65]  Chenglong Xia,et al.  Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression , 2019, Proceedings of the National Academy of Sciences.

[66]  Patrick M. Helbling,et al.  Combined single-cell and spatial transcriptomics reveals the molecular, cellular and spatial bone marrow niche organization , 2019, Nature Cell Biology.

[67]  Pere Roca-Cusachs,et al.  Integrins as biomechanical sensors of the microenvironment , 2019, Nature Reviews Molecular Cell Biology.

[68]  Michael J. Lawson,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[69]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[70]  Luc Anselin,et al.  The Moran scatterplot as an ESDA tool to assess local instability in spatial association , 2019, Spatial Analytical Perspectives on GIS.

[71]  Rafael A. Irizarry,et al.  Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model , 2019, Genome Biology.

[72]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[73]  Trygve E Bakken,et al.  Identification of genetic markers for cortical areas using a Random Forest classification routine and the Allen Mouse Brain Atlas , 2019, bioRxiv.

[74]  Fabian J Theis,et al.  Single-cell RNA-seq denoising using a deep count autoencoder , 2019, Nature Communications.

[75]  C. Théry,et al.  Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication , 2019, Nature Cell Biology.

[76]  Hui Hu,et al.  AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors , 2018, Nucleic Acids Res..

[77]  Catherine E. Braine,et al.  Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis , 2018, Science.

[78]  Nimrod D. Rubinstein,et al.  Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.

[79]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[80]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[81]  Srinivas C. Turaga,et al.  In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level , 2018, Cell.

[82]  M. Buckingham,et al.  The deployment of cell lineages that form the mammalian heart , 2018, Nature Reviews Cardiology.

[83]  Guocheng Yuan,et al.  Identification of spatially associated subpopulations by combining scRNA-seq and sequential fluorescence in situ hybridization data , 2018, Nature Biotechnology.

[84]  Evan Z. Macosko,et al.  Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.

[85]  William E. Allen,et al.  Three-dimensional intact-tissue sequencing of single-cell transcriptional states , 2018, Science.

[86]  Chun Jimmie Ye,et al.  Single‐Cell RNA Sequencing of Lymph Node Stromal Cells Reveals Niche‐Associated Heterogeneity , 2018, Immunity.

[87]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[88]  O. Stegle,et al.  Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis , 2018, bioRxiv.

[89]  Rickard Sandberg,et al.  Identification of spatial expression trends in single-cell gene expression data , 2018, Nature Methods.

[90]  D. Feldmeyer,et al.  Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex , 2018, Front. Neuroanat..

[91]  S. Teichmann,et al.  SpatialDE: identification of spatially variable genes , 2018, Nature Methods.

[92]  S. Dudoit,et al.  A general and flexible method for signal extraction from single-cell RNA-seq data , 2018, Nature Communications.

[93]  Marcel Oberlaender,et al.  Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex , 2017, Front. Neuroanat..

[94]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[95]  A. Faissner,et al.  Tenascin-C in the matrisome of neural stem and progenitor cells , 2017, Molecular and Cellular Neuroscience.

[96]  I. Amit,et al.  Single-cell spatial reconstruction reveals global division of labor in the mammalian liver , 2016, Nature.

[97]  B. Aronow,et al.  Genetic lineage tracing defines myofibroblast origin and function in the injured heart , 2016, Nature Communications.

[98]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[99]  P. Arlotta,et al.  Adult axolotls can regenerate original neuronal diversity in response to brain injury , 2016, eLife.

[100]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[101]  D. Slamon,et al.  Pleiotrophin mediates hematopoietic regeneration via activation of RAS. , 2014, The Journal of clinical investigation.

[102]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[103]  A. Oudenaarden,et al.  Validation of noise models for single-cell transcriptomics , 2014, Nature Methods.

[104]  Timur Zhiyentayev,et al.  Single-cell in situ RNA profiling by sequential hybridization , 2014, Nature Methods.

[105]  D. Scadden Nice Neighborhood: Emerging Concepts of the Stem Cell Niche , 2014, Cell.

[106]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[107]  Zhuowen Tu,et al.  Regularized vector field learning with sparse approximation for mismatch removal , 2013, Pattern Recognit..

[108]  Edward Y. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[109]  M. Levine,et al.  ELAV mediates 3' UTR extension in the Drosophila nervous system. , 2012, Genes & development.

[110]  H. Kestler,et al.  A Boolean Model of the Cardiac Gene Regulatory Network Determining First and Second Heart Field Identity , 2012, PloS one.

[111]  Michael Levin,et al.  Morphogenetic fields in embryogenesis, regeneration, and cancer: Non-local control of complex patterning , 2012, Biosyst..

[112]  Lieven Thorrez,et al.  Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. , 2011, Genome research.

[113]  Sergio J. Rey,et al.  PySAL: A Python Library of Spatial Analytical Methods , 2010 .

[114]  C. Nüsslein-Volhard,et al.  ErbB2 and ErbB3 regulate amputation-induced proliferation and migration during vertebrate regeneration. , 2009, Developmental biology.

[115]  Tobias Meyer,et al.  Robust Neuronal Symmetry Breaking by Ras-Triggered Local Positive Feedback , 2008, Current Biology.

[116]  P. Tomançak,et al.  Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function , 2007, Cell.

[117]  C. Woolf,et al.  ATF3 Increases the Intrinsic Growth State of DRG Neurons to Enhance Peripheral Nerve Regeneration , 2007, The Journal of Neuroscience.

[118]  D. Scadden,et al.  The stem-cell niche as an entity of action , 2006, Nature.

[119]  David J. Miller,et al.  Gene Regulatory Networks in the Evolution and Development of the Heart , 2006 .

[120]  P. Janmey,et al.  Tissue Cells Feel and Respond to the Stiffness of Their Substrate , 2005, Science.

[121]  Eran Perlson,et al.  Vimentin-Dependent Spatial Translocation of an Activated MAP Kinase in Injured Nerve , 2005, Neuron.

[122]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[123]  Tony Pawson,et al.  β-Catenin and TCF Mediate Cell Positioning in the Intestinal Epithelium by Controlling the Expression of EphB/EphrinB , 2002, Cell.

[124]  C. Tase,et al.  Increased syndecan expression by pleiotrophin and FGF receptor‐expressing astrocytes in injured brain tissue , 2002, Glia.

[125]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[126]  Yoshua Bengio,et al.  Série Scientifique Scientific Series Incorporating Second-order Functional Knowledge for Better Option Pricing Incorporating Second-order Functional Knowledge for Better Option Pricing , 2022 .

[127]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[128]  B O Palsson,et al.  Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[129]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[130]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[131]  Y. Jan,et al.  Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. , 1994, Genes & development.

[132]  J. Ord,et al.  “Large Sample-Size Distribution of Statistics Used in Testing for Spatial Correlation”: A Comment , 1977 .

[133]  Ashish K. Sen,et al.  “Large Sample-Size Distribution of Statistics Used in Testing for Spatial Correlation”: A Reply , 1977 .

[134]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.