Spectral distributed Lagrange multiplier method: algorithm and benchmark tests

We extend the formulation of the distributed Lagrange multiplier (DLM) approach for particulate flows to high-order methods within the spectral/hp element framework. We implement the rigid-body motion constraint inside the particle via a penalty method. The high-order DLM method demonstrates spectral convergence rate, i.e. discretization errors decrease exponentially as the order of spectral polynomials increases. We provide detailed comparisons between the spectral DLM method, direct numerical simulations, and the force coupling method for a number of 2D and 3D benchmark flow problems. We also validate the spectral DLM method with available experimental data for a transient problem. The new DLM method can potentially be very effective in many-moving body problems, where a smaller number of grid points is required in comparison with low-order methods.

[1]  Howard H. Hu Direct simulation of flows of solid-liquid mixtures , 1996 .

[2]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .

[3]  Neelesh A. Patankar,et al.  Lift-off of a single particle in Newtonian and viscoelastic fluids by direct numerical simulation , 2001, Journal of Fluid Mechanics.

[4]  T. Yabe,et al.  The constrained interpolation profile method for multiphase analysis , 2001 .

[5]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies : Application to particulate flow , 1999 .

[6]  R. Glowinski,et al.  Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow , 2002 .

[7]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[8]  Philippe A. Tanguy,et al.  A three-dimensional fictitious domain method for incompressible fluid flow problems , 1997 .

[9]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[10]  R. Glowinski,et al.  Fluidization of 1204 spheres: simulation and experiment , 2002, Journal of Fluid Mechanics.

[11]  Peter Hansbo,et al.  The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations , 1992 .

[12]  M. Maxey,et al.  Force-coupling method for particulate two-phase flow: stokes flow , 2003 .

[13]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[14]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[15]  Marek Behr,et al.  Finite element solution strategies for large-scale flow simulations☆ , 1994 .

[16]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[17]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[18]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[19]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .

[20]  T. E. TezduyarAerospace,et al.  3d Simulation of Fluid-particle Interactions with the Number of Particles Reaching 100 , 1996 .

[21]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[22]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[23]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[24]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[25]  J. Pinton,et al.  Velocity measurement of a settling sphere , 2000 .

[26]  Howard H. Hu,et al.  Direct numerical simulations of fluid-solid systems using the arbitrary Langrangian-Eulerian technique , 2001 .

[27]  M. Maxey,et al.  Localized force representations for particles sedimenting in Stokes flow , 2001 .

[28]  Olivier Lebaigue,et al.  The second gradient theory: a tool for the direct numerical simulation of liquid–vapor flows with phase-change , 2001 .

[29]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[30]  J. Glimm,et al.  A critical analysis of Rayleigh-Taylor growth rates , 2001 .

[31]  M. Maxey,et al.  Experimental verification of the force coupling method for particulate flows , 2002 .

[32]  R. Glowinski,et al.  Modelling Rayleigh–Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation , 2001, Journal of Fluid Mechanics.

[33]  George Em Karniadakis,et al.  Nεκταr code: Dynamic simulations without remeshing , 1999 .

[34]  Peter D. Minev,et al.  A stabilized incremental projection scheme for the incompressible Navier–Stokes equations , 2001 .

[35]  Roland Glowinski,et al.  Numerical Simulation of the Sedimentation of Rigid Bodies in an Incompressible Viscous Fluid by Lagrange Multiplier/Fictitious Domain Methods Combined with the Taylor–Hood Finite Element Approximation , 2002, J. Sci. Comput..

[36]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[37]  N. Patankar A formulation for fast computations of rigid particulate flows , 2001 .

[38]  P. Santangelo,et al.  Development of the Mask method for incompressible unsteady flows , 1989 .

[39]  R. Glowinski,et al.  A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows , 2000 .

[40]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[41]  Roland Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows , 2000 .

[42]  R. Verzicco,et al.  Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations , 2000 .

[43]  A. Prosperetti,et al.  Physalis: a new o(N) method for the numerical simulation of disperse systems: potential flow of spheres , 2001 .

[44]  Jan S. Hesthaven,et al.  Spectral penalty methods , 2000 .

[45]  M. Maxey,et al.  Simulations of dispersed turbulent multiphase flow , 1997 .