Higher-order unification via explicit substitutions

Higher-order unification is equational unification for /spl beta//spl eta/-conversion, but it is not first-order equational unification, as substitution has to avoid capture. In this paper higher-order unification is reduced to first-order equational unification in a suitable theory: the /spl lambda//spl sigma/-calculus of explicit substitutions.

[1]  Warren D. Goldfarb,et al.  The Undecidability of the Second-Order Unification Problem , 1981, Theor. Comput. Sci..

[2]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[3]  J. G. Williams Instantiation Theory: On the Foundations of Automated Deduction , 1991 .

[4]  Alberto Martelli,et al.  An Efficient Unification Algorithm , 1982, TOPL.

[5]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[6]  Wayne Snyder,et al.  Higher-Order Unification Revisited: Complete Sets of Transformations , 1989, J. Symb. Comput..

[7]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[8]  Gopalan Nadathur,et al.  A representation of Lambda terms suitable for operations on their intensions , 1990, LISP and Functional Programming.

[9]  C. Kirchner,et al.  Higher-order unification via explicit substitutions Extended Abstract , 1995, LICS 1995.

[10]  Daniel J. Dougherty,et al.  A Combinatory Logic Approach to Higher-Order E-Unification , 1995, Theor. Comput. Sci..

[11]  Viggo Stoltenberg-hansen,et al.  In: Handbook of Logic in Computer Science , 1995 .

[12]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[13]  A Left-Linear Variant of C , 2022 .

[14]  Claude Kirchner,et al.  Unification via Explicit Substitutions: The Case of Higher-Order Patterns , 1996, JICSLP.

[15]  Peter B. Andrews An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.

[16]  Daniel J. Dougherty Higher-Order Unification via Combinators , 1993, Theor. Comput. Sci..

[17]  Jean-Marie Hullot,et al.  Canonical Forms and Unification , 1980, CADE.

[18]  54506 Vandoeuvre Implementation of Higher-order Uniication Based on Calculus of Explicit Substitution , 1995 .

[19]  Claude Kirchner,et al.  Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[20]  CombinatorsDaniel J. DoughertyDepartment,et al.  Higher-order Uniication via Combinators , 1993 .

[21]  Andreas Werner,et al.  Normalizing Narrowing for Weakly Terminating and Confluent Systems , 1995, CP.

[22]  Gilles Dowek,et al.  A Complete Proof Synthesis Method for the Cube of Type Systems , 1993, J. Log. Comput..

[23]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[24]  Jean-Louis Krivine,et al.  Lambda-calculus, types and models , 1993, Ellis Horwood series in computers and their applications.

[25]  Hong Chen,et al.  On Finite Representations of Infinite Sequences of Terms , 1990, CTRS.

[26]  Heinrich Hußmann,et al.  Unification in Conditional Equational Theories , 1985, European Conference on Computer Algebra.

[27]  Peter Borovanský,et al.  Implementation of Higher-Order Unification Based on Calculus of Explicit Substitution , 1995, SOFSEM.

[28]  Dale Miller,et al.  Unification Under a Mixed Prefix , 1992, J. Symb. Comput..

[29]  Claude Kirchner,et al.  Higher-Order Equational Unification via Explicit Substitutions , 1997, ALP/HOA.

[30]  P.-L. Curien,et al.  Un résultat de complétude pour les substitutions explicites , 1991 .

[31]  Hélène Kirchner,et al.  Meta-rule Synthesis from Crossed Rewrite Systems , 1990, CTRS.

[32]  Gérard P. Huet,et al.  A Unification Algorithm for Typed lambda-Calculus , 1975, Theor. Comput. Sci..

[33]  Dale Miller,et al.  A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..

[34]  Pierre-Louis Curien Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.

[35]  GERARD P. HUET,et al.  The Undecidability of Unification in Third Order Logic , 1973, Inf. Control..

[36]  Jean-Jacques Lévy,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.