A Design Concept for Halogen-free Mg2+/Li+-Dual Salt-Containing Gel-Polymer-Electrolytes for Rechargeable Magnesium Batteries

[1]  M. Buchmeiser,et al.  Communication—Lithium Titanate as Mg-Ion Insertion Anode for Mg-Ion Sulfur Batteries Based on Sulfurated Poly(acrylonitrile) Composite , 2021, Journal of The Electrochemical Society.

[2]  M. Rashad,et al.  Understanding the low temperature electrochemistry of magnesium-lithium hybrid ion battery in all-phenyl-complex solutions , 2021, Journal of Energy Chemistry.

[3]  U. Starke,et al.  High‐Performance Magnesium‐Sulfur Batteries Based on a Sulfurated Poly(acrylonitrile) Cathode, a Borohydride Electrolyte, and a High‐Surface Area Magnesium Anode , 2020 .

[4]  Jiulin Wang,et al.  Sodium Polyacrylate as a Promising Aqueous Binder of S@pPAN Cathodes for Magnesium–Sulfur Batteries , 2020 .

[5]  Patrick Bonnick,et al.  A Trip to Oz and a Peak Behind the Curtain of Magnesium Batteries , 2020, Advanced Functional Materials.

[6]  Tara Foroozan,et al.  Composite Polymer Electrolyte for Highly Cyclable Room-Temperature Solid-State Magnesium Batteries , 2019, ACS Applied Energy Materials.

[7]  M. Buchmeiser,et al.  Rechargeable Magnesium–Sulfur Battery Technology: State of the Art and Key Challenges , 2019, Advanced Functional Materials.

[8]  B. Shan,et al.  High Performance Room Temperature Sodium–Sulfur Battery by Eutectic Acceleration in Tellurium-Doped Sulfurized Polyacrylonitrile , 2019, ACS Applied Energy Materials.

[9]  Jian-jun Zhang,et al.  An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries , 2019, Electrochimica Acta.

[10]  Jiulin Wang,et al.  High Active Magnesium Trifluoromethanesulfonate-Based Electrolytes for Magnesium-Sulfur Batteries. , 2019, ACS applied materials & interfaces.

[11]  D. Macfarlane,et al.  Mg Cathode Materials and Electrolytes for Rechargeable Mg Batteries: A Review , 2019, Batteries & Supercaps.

[12]  Jiulin Wang,et al.  Sulfur@microporous Carbon Cathode with a High Sulfur Content for Magnesium–Sulfur Batteries with Nucleophilic Electrolytes , 2018, The Journal of Physical Chemistry C.

[13]  Jiaqi Huang,et al.  A Review of Advanced Energy Materials for Magnesium–Sulfur Batteries , 2018, Energy & Environmental Materials.

[14]  A. Manthiram,et al.  Toward Highly Reversible Magnesium–Sulfur Batteries with Efficient and Practical Mg[B(hfip)4]2 Electrolyte , 2018, ACS Energy Letters.

[15]  M. Zitnik,et al.  Mechanistic Study of Magnesium–Sulfur Batteries , 2017 .

[16]  T. L. Liu,et al.  Tertiary Mg/MgCl2/AlCl3 Inorganic Mg2+ Electrolytes with Unprecedented Electrochemical Performance for Reversible Mg Deposition , 2017 .

[17]  K. Karuppasamy,et al.  An efficient way to achieve high ionic conductivity and electrochemical stability of safer nonaflate anion-based ionic liquid gel polymer electrolytes (ILGPEs) for rechargeable lithium ion batteries , 2017, Journal of Solid State Electrochemistry.

[18]  L. Nazar,et al.  Layered TiS2 Positive Electrode for Mg Batteries , 2016 .

[19]  S. Choudhury,et al.  A stable room-temperature sodium–sulfur battery , 2016, Nature Communications.

[20]  Eleanor I. Gillette,et al.  Enhancing the reversibility of Mg/S battery chemistry through Li(+) mediation. , 2015, Journal of the American Chemical Society.

[21]  Ya‐Xia Yin,et al.  Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. , 2015, Angewandte Chemie.

[22]  Yan Yao,et al.  High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage. , 2015, ACS applied materials & interfaces.

[23]  Zhan Lin,et al.  Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. , 2013, Angewandte Chemie.

[24]  S. Hashmi,et al.  Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application , 2011 .