A comparative study for Arabic Multi-Document Summarization Systems (AMD-SS)

This paper demonstrates a comparative study of Arabic Multi-Document Summarization System (AMD-SS). These methods are compared and analyzed, aiming to detect which method generates a genuine summary and achieves the best results in comparison with the human summarization techniques. The comparative study shows that there is a lack in the area of Arabic Automatic Text Summarization systems. Therefore, we proposed an Arabic Text Summarization model that built in linear algorithms based on parallel computing techniques. The proposed model is built in order to generate an Arabic Document Summary (ADS) that is fully coherent, grammatical and meaningful Arabic sentences, closing to a human summarization. Recent researches have not provided perfect Arabic summary.

[1]  Fatima T. AL-Khawaldeh Lexical Cohesion and Entailment based Segmentation for Arabic Text Summarization ( LCEAS ) , 2015 .

[2]  Hassan Ismail Abdalla,et al.  PSO-Based Feature Selection for Arabic Text Summarization , 2015, J. Univers. Comput. Sci..

[3]  Hesham Ahmed,et al.  Arabic Documents classification method a Step towards Efficient Documents Summarization , 2015 .

[4]  M. Vennila,et al.  Sentence Level Text Clustering using a Hierarchical Fuzzy Relational Clustering Algorithm , 2014 .

[5]  Saïd El Alaoui Ouatik,et al.  Impact of stemming on Arabic text summarization , 2016, 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt).

[6]  Steffen Staab,et al.  Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis , 2005, J. Artif. Intell. Res..

[7]  S. Sathya Bama,et al.  A SURVEY ON PERFORMANCE EVALUATION MEASURES FOR INFORMATION RETRIEVAL SYSTEM , 2015 .

[8]  Nabil M. Hewahi,et al.  Automatic Arabic Text Summarization System (AATSS) Based on Semantic Features Extraction , 2012, Int. J. Technol. Diffusion.

[9]  Naomie Salim,et al.  Automatic Multi Document Summarization Approaches , 2012 .

[10]  Ibrahim Sobh,et al.  An Optimized Dual Classification System for Arabic Extractive Generic Text Summarization , 2007 .

[11]  I O Awoyelu,et al.  Performance Evaluation of an Improved Model for Keyphrase Extraction in Documents , 2016 .

[12]  Hoda M. Onsi,et al.  A Proposed Textual Graph Based Model for Arabic Multi-document Summarization , 2016 .

[13]  Bassam H. Hammo,et al.  Evaluation of Query-Based Arabic Text Summarization System , 2008, 2008 International Conference on Natural Language Processing and Knowledge Engineering.

[14]  Issam Sahmoudi,et al.  AN EFFICIENT APPROACH TO IMPROVE ARABIC DOCUMENTS CLUSTERING BASED ON A NEW KEYPHRASES EXTRACTION ALGORITHM , 2013 .

[15]  Philippe Blache,et al.  Automatic summarization of Semitic languages , 2014 .

[16]  M. B. Chandak,et al.  Graph-Based Algorithms for Text Summarization , 2010, 2010 3rd International Conference on Emerging Trends in Engineering and Technology.

[17]  Eman Al-Thwaib,et al.  Summarization as Feature Selection for Arabic Text Classification , 2014 .

[18]  Udo Kruschwitz,et al.  Exploring Clustering for Multi-document Arabic Summarisation , 2011, AIRS.

[19]  Gabriel Altmann,et al.  Forms and Degrees of Repetition in Texts: Detection and Analysis , 2015 .

[20]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[21]  Imed Zitouni,et al.  Natural Language Processing of Semitic Languages , 2014, Theory and Applications of Natural Language Processing.

[22]  Mahmoud El-Haj,et al.  Using a Keyness Metric for Single and Multi Document Summarisation , 2013 .

[23]  Dianne P. O'Leary,et al.  Arabic/English Multi-document Summarization with CLASSY - The Past and the Future , 2008, CICLing.

[24]  Naomie Salim,et al.  Multi document summarization based on cross-document relation using voting technique , 2013, 2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE).

[25]  Ahmed Guessoum,et al.  A Supervised Approach to Arabic Text Summarization Using AdaBoost , 2015, WorldCIST.

[26]  Nawal A. El-Fishawy,et al.  Arabic summarization in Twitter social network , 2014 .

[27]  Saïd El Alaoui Ouatik,et al.  Arabic text summarization based on latent semantic analysis to enhance arabic documents clustering , 2013, ArXiv.

[28]  Raj Kumar,et al.  Syntactic and Sentence Feature Based Hybrid Approach for Text Summarization , 2014 .

[29]  Karin C. Ryding,et al.  A Reference Grammar of Modern Standard Arabic , 2005 .

[30]  Hiroya Takamura,et al.  Identifying Cross-Document Relations between Sentences , 2008, IJCNLP.

[31]  Nazlia Omar,et al.  Automatic multi-document Arabic text summarization using clustering and keyphrase extraction , 2015 .

[32]  Qasem A. Al-Radaideh,et al.  ARABIC TEXT SUMMARIZATION USING AGGREGATE SIMILARITY , 2014 .

[33]  A. Ibrahim,et al.  Arabic text summarization using Rhetorical Structure Theory , 2012, 2012 8th International Conference on Informatics and Systems (INFOS).

[34]  Ismail Hmeidi,et al.  Automatic Keyphrase Extractor from Arabic Documents , 2016 .

[35]  Xiaojun Wan,et al.  An Exploration of Document Impact on Graph-Based Multi-Document Summarization , 2008, EMNLP.

[36]  Sattar Hashemi,et al.  Multi-Document Summarization Using Graph-Based Iterative Ranking Algorithms and Information Theoretical Distortion Measures , 2014, FLAIRS Conference.

[37]  Aqil M. Azmi,et al.  A text summarizer for Arabic , 2012, Comput. Speech Lang..

[38]  Reem Bassiouney,et al.  Arabic Language and Linguistics , 2012 .

[39]  Ahmed Ibrahim,et al.  Improve the Automatic Summarization of Arabic Text Depending on Rhetorical Structure Theory , 2013, 2013 12th Mexican International Conference on Artificial Intelligence.

[40]  Fahad Alotaiby,et al.  New approaches to automatic headline generation for Arabic documents , 2012 .

[41]  Husniza Husni,et al.  Multi-Document Arabic Summarization Using Text Clustering to Reduce Redundancy , 2014 .

[42]  Dragomir R. Radev,et al.  LexRank: Graph-based Lexical Centrality as Salience in Text Summarization , 2004, J. Artif. Intell. Res..

[43]  Lamia Hadrich Belguith,et al.  Digital Learning for Summarizing Arabic Documents , 2010, IceTAL.

[44]  Al Harazin,et al.  Multi-document Arabic Text Summarization , 2015 .

[45]  Elena Lloret,et al.  Text summarisation in progress: a literature review , 2011, Artificial Intelligence Review.

[46]  Enhong Chen,et al.  Feature Selection with Integrated Relevance and Redundancy Optimization , 2015, 2015 IEEE International Conference on Data Mining.

[47]  Walid Mohamed Aly,et al.  A New Machine Learning Approach for Arabic/English Documents Classification , 2013 .

[48]  Saïd El Alaoui Ouatik,et al.  Arabic text summarization based on graph theory , 2015, 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA).

[49]  Guy Lapalme,et al.  Lakhas, an Arabic summarization system , 2004 .

[50]  Mohamed Shaheen,et al.  Arabic Question Answering: Systems, Resources, Tools, and Future Trends , 2014, Arabian Journal for Science and Engineering.

[51]  Mohamed El Bachir Menai,et al.  Automatic Arabic text summarization: a survey , 2015, Artificial Intelligence Review.

[52]  Niladri Chatterjee,et al.  Discrete Differential Evolution for Text Summarization , 2014, 2014 International Conference on Information Technology.

[53]  Thiago A. S. Pardo,et al.  Experiments with CST-Based Multidocument Summarization , 2010, TextGraphs@ACL.

[54]  QingXiang Wu,et al.  Fast clustering based on state learning machine , 2016, 2016 12th World Congress on Intelligent Control and Automation (WCICA).

[55]  Shanmugasundaram Hariharan,et al.  Enhanced graph based approach for multi document summarization , 2013, Int. Arab J. Inf. Technol..

[56]  Alaa Hamouda,et al.  An Ontology-based Summarization System for Arabic Documents (OSSAD) , 2013 .

[57]  Philippe Blache,et al.  Minimum redundancy and maximum relevance for single and multi-document Arabic text summarization , 2014, J. King Saud Univ. Comput. Inf. Sci..

[58]  Fuji Ren,et al.  Automatic text classification using modified centroid classifier , 2009, 2009 International Conference on Natural Language Processing and Knowledge Engineering.

[59]  Ong Sing Goh,et al.  A Review on Automatic Text Summarization Approaches , 2016, J. Comput. Sci..

[60]  Wojdan Alsaeedan,et al.  Swarm intelligence for natural language processing , 2015, Int. J. Artif. Intell. Soft Comput..