Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means

[1]  Y. Chu,et al.  Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind , 2020 .

[2]  Y. Chu,et al.  Approximation for the complete elliptic integral of the first kind , 2020 .

[3]  Y. Chu,et al.  Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals , 2019 .

[4]  Y. Chu,et al.  Sharp one-parameter geometric and quadratic means bounds for the Sándor–Yang means , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[5]  Y. Chu,et al.  A note on generalized convex functions , 2019, Journal of Inequalities and Applications.

[6]  Y. Chu,et al.  Monotonicity, Convexity and Inequalities Involving the Generalized Elliptic Integrals , 2019, Acta Mathematica Scientia.

[7]  Y. Chu,et al.  Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean , 2019, Journal of Inequalities and Applications.

[8]  Yu-Ming Chu,et al.  Inequalities and infinite product formula for Ramanujan generalized modular equation function , 2018 .

[9]  Yu-Ming Chu,et al.  On rational bounds for the gamma function , 2017, Journal of Inequalities and Applications.

[10]  Y. Chu,et al.  Refinements of transformation inequalities for zero-balanced hypergeometric functions , 2017 .

[11]  Zhen-Hang Yang,et al.  Monotonicity criterion for the quotient of power series with applications , 2015 .

[12]  Zhen-Hang Yang,et al.  Sharp Power Mean Bounds for Sándor Mean , 2015 .

[13]  Yu-Ming Chu,et al.  Bounds of the Neuman-Sándor Mean Using Power and Identric Means , 2013 .

[14]  Y. Chu,et al.  Sharp bounds for Seiffert and Neuman-Sándor means in terms of generalized logarithmic means , 2013 .

[15]  Yue-Ping Jiang,et al.  Concavity of the complete elliptic integrals of the second kind with respect to Hölder means , 2012 .

[16]  Yu-Ming Chu,et al.  A Best Possible Double Inequality for Power Mean , 2012, J. Appl. Math..

[17]  Yu-Ming Chu,et al.  Hölder mean inequalities for the complete elliptic integrals , 2012 .

[18]  Y. Chu,et al.  Sharp bounds by the power mean for the generalized Heronian mean , 2012 .

[19]  Yu-Ming Chu,et al.  Optimal Inequalities for Power Means , 2012, J. Appl. Math..

[20]  S. Qiu,et al.  Inequalities for the generalized elliptic integrals with respect to Hölder means , 2012 .

[21]  Yu-Ming Chu,et al.  Optimal Lower Power Mean Bound for the Convex Combination of Harmonic and Logarithmic Means , 2011 .

[22]  Miao-Kun Wang,et al.  An optimal power mean inequality for the complete elliptic integrals , 2011, Appl. Math. Lett..

[23]  Y. Chu,et al.  Sharp Power Mean Bounds for the Combination of Seiffert and Geometric Means , 2010 .

[24]  Árpád Baricz,et al.  Geometrically concave univariate distributions , 2010 .

[25]  Árpád Baricz,et al.  Functional inequalities involving Bessel and modified Bessel functions of the first kind , 2008 .

[26]  Árpád Baricz,et al.  Inequalities involving modified Bessel functions of the first kind II , 1992 .

[27]  P. Bullen Handbook of means and their inequalities , 1987 .

[28]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[29]  T. S. Nanjundiah,et al.  Inequalities concerning bessel functions and orthogonal polynomials , 1951 .

[30]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .

[31]  Zhen-Hang Yang,et al.  Notes on the complete elliptic integral of the first kind , 2020 .

[32]  Y. Chu,et al.  Inequalities for generalized trigonometric and hyperbolic functions with one parameter , 2020, Journal of Mathematical Inequalities.

[33]  Y. Chu,et al.  Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means , 2017 .

[34]  Zhen-Hang Yang,et al.  Sharp Gautschi inequality for parameter 0 , 2017 .

[35]  Y. Chu,et al.  Concavity of the error function with respect to Hölder means , 2016 .

[36]  W. Xia,et al.  THE OPTIMAL CONVEX COMBINATION BOUNDS OF ARITHMETIC AND HARMONIC MEANS IN TERMS OF POWER MEAN , 2012 .

[37]  Y. Chu,et al.  Hölder mean inequalities for the generalized Grötzsch ring and Hersch-Pfluger distortion functions , 2012 .

[38]  Y. Chu,et al.  A power mean inequality for the Grötzsch ring function , 2011 .

[39]  Á. Baricz CONVEXITY OF THE ZERO-BALANCED GAUSSIAN HYPERGEOMETRIC FUNCTIONS WITH RESPECT TO HÖLDER MEANS , 2007 .

[40]  J. Borwein,et al.  Refined Convexity and Special Cases of the Blaschke-Santalo Inequality , 2001 .

[41]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .