Finite-time observer for the output depending observer form

This paper investigates the problem of global finite-time observer design for a class of nonlinear systems which can be transformed into the output depending normal form. By introducing the output-dependent gains, we prove that the recent result can be adapted to design a global finite-time observer for the studied normal form.

[1]  X. Xia,et al.  Semi-global finite-time observers for nonlinear systems , 2008, Autom..

[2]  D. Luenberger An introduction to observers , 1971 .

[3]  Gildas Besançon,et al.  An Immersion-Based Observer Design for Rank-Observable Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[4]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[5]  Wilfrid Perruquetti,et al.  Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems , 2003, Autom..

[6]  Jason Jianjun Gu,et al.  Global Finite-Time Observers for Lipschitz Nonlinear Systems , 2011, IEEE Transactions on Automatic Control.

[7]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[8]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[9]  Denis Dochain,et al.  Design of a nonlinear finite-time converging observer for a class of nonlinear systems , 2007 .

[10]  Driss Boutat,et al.  Single Output-Dependent Observability Normal Form , 2007, SIAM J. Control. Optim..

[11]  Driss Boutat,et al.  Extended output depending normal form , 2013, Autom..

[12]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[13]  H. Keller Non-linear observer design by transformation into a generalized observer canonical form , 1987 .

[14]  Wilfrid Perruquetti,et al.  Finite-Time Observers: Application to Secure Communication , 2008, IEEE Transactions on Automatic Control.

[15]  Henk Nijmeijer,et al.  Time scaling for observer design with linearizable error dynamics , 2004, Autom..

[16]  Driss Boutat,et al.  Multi-output dependent observability normal form , 2009 .

[17]  Jean-Pierre Barbot,et al.  An algebraic framework for the design of nonlinear observers with unknown inputs , 2007, 2007 46th IEEE Conference on Decision and Control.

[18]  Wilfrid Perruquetti,et al.  A Global High-Gain Finite-Time Observer , 2010, IEEE Transactions on Automatic Control.

[19]  M. Fliess,et al.  Reconstructeurs d'état , 2004 .

[20]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[21]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[22]  Tarek Ahmed-Ali,et al.  Updating the gain of global finite-time high gain observers , 2011, IEEE Conference on Decision and Control and European Control Conference.

[23]  H. Hammouri,et al.  Observer Error Linearization Multi-Output Depending , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[24]  Robert Engel,et al.  A continuous-time observer which converges in finite time , 2002, IEEE Trans. Autom. Control..

[25]  Mondher Farza,et al.  A Simple Observer for a Class of Nonlinear Systems , 1998 .

[26]  Jie Huang,et al.  Finite-time control for robot manipulators , 2002, Syst. Control. Lett..

[27]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[28]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[29]  P. Borne,et al.  A note on sliding observer and controller for generalized canonical forms , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[30]  D. Boutat,et al.  Output Dependent Observability Linear Normal Form , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.